Suppr超能文献

苏氨酸82在TAT视紫红质独特光化学中的作用。

Role of Thr82 for the unique photochemistry of TAT rhodopsin.

作者信息

Sugimoto Teppei, Katayama Kota, Kandori Hideki

机构信息

Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.

OptoBioTechnology Research Center, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan.

出版信息

Biophys Physicobiol. 2021 Apr 16;18:108-115. doi: 10.2142/biophysico.bppb-v18.012. eCollection 2021.

Abstract

Marine bacterial TAT rhodopsin possesses the pKa of the retinal Schiff base, the chromophore, at neutral pH, and photoexcitation of the visible protonated state forms the isomerized 13- state, but reverts to the original state within 10 sec. To understand the origin of these unique molecular properties of TAT rhodopsin, we mutated Thr82 into Asp, because many microbial rhodopsins contain Asp at the corresponding position as the Schiff base counterion. A pH titration study revealed that the pKa of the Schiff base increased considerably in T82D (>10.5), and that the pKa of the counterion, which is likely to be D82, is 8.1. It was thus concluded that T82 is the origin of the neutral pKa of the Schiff base in TAT rhodopsin. The photocycle of T82D TAT rhodopsin exhibited strong pH dependence. When pH is lower than the pKa of the counterion (pH <8.1), formation of the primary K intermediate was observed by low-temperature UV-visible spectroscopy, but flash photolysis failed to monitor photointermdiates at >10 sec. The results were identical for the wild-type TAT rhodopsin. In contrast, when pH was higher than the pKa of the counterion, we observed the formation of the M intermediate, which decayed with the time constants of 3.75 ms and 12.2 sec. It is likely that the protonation state of D82 dramatically switches the photoreaction dynamics of T82D, whose duration lies between <10 sec and >10 sec. It was thus concluded that T82 is one of the determinants of the unique photochemistry of TAT rhodopsin.

摘要

海洋细菌视紫红质TAT在中性pH条件下具有发色团视黄醛席夫碱的pKa,可见质子化状态的光激发形成异构化的13-状态,但在10秒内恢复到原始状态。为了理解TAT视紫红质这些独特分子特性的起源,我们将苏氨酸82突变为天冬氨酸,因为许多微生物视紫红质在相应位置含有天冬氨酸作为席夫碱抗衡离子。pH滴定研究表明,在T82D中席夫碱的pKa显著增加(>10.5),并且抗衡离子(可能是D82)的pKa为8.1。因此得出结论,T82是TAT视紫红质中席夫碱中性pKa的起源。T82D TAT视紫红质的光循环表现出强烈的pH依赖性。当pH低于抗衡离子的pKa(pH <8.1)时,通过低温紫外可见光谱观察到初级K中间体的形成,但闪光光解在>10秒时未能监测到光中间体。野生型TAT视紫红质的结果相同。相反,当pH高于抗衡离子的pKa时,我们观察到M中间体的形成,其以3.75毫秒和12.2秒的时间常数衰减。很可能D82的质子化状态极大地改变了T82D的光反应动力学,其持续时间在<10秒和>10秒之间。因此得出结论,T82是TAT视紫红质独特光化学的决定因素之一。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0048/8116198/a8256d8f2153/18_108-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验