Suppr超能文献

血清代谢谱分析确定了一组用于改善前列腺癌诊断的生物标志物。

Serum Metabolic Profiling Identifies a Biomarker Panel for Improvement of Prostate Cancer Diagnosis.

作者信息

Xu Huan, Chen Junyi, He Jingyi, Ji Jin, Cao Zhi, Chen Xi, Xu Yalong, He Xing, Xu Guowang, Zhou Lina, Wei Xuedong, Hou Jianquan, Wang Zhong, Yang Bo, Wang Fubo

机构信息

Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, China.

Department of Urology, Shanghai Ninth People's Hospital, Shanghai, China.

出版信息

Front Oncol. 2021 May 7;11:666320. doi: 10.3389/fonc.2021.666320. eCollection 2021.

Abstract

OBJECTIVES

To identify and validate a biomarker panel by serum metabolic profiling for improvement of PCa diagnosis.

MATERIALS AND METHODS

Totally, 134 individuals were included in this study. Among them, 39 PCa patients and 45 control patients (negative prostate biopsy) were involved in the discovery phase and 50 healthy controls were enrolled for validation phase of metabolomics study. LC-MS Analysis was used for the identification of the serum metabolites of patients.

RESULTS

Logistics regression analysis shows that 5 metabolites [dMePE(18:0/18:2), PC(16:0/20:2), PS(15:0/18:2), SM(d16:0/24:1], Carnitine C14:0) were significantly changed in PCa patients compared with control patients. A metabolic panel (MET) was calculated, showing a significantly higher diagnostic performance than PSA in differentiating PCa from control patients [AUC (MET . PSA): 0.823 ± 0.046 . 0.712 ± 0.057, p<0.001]. Moreover, this panel was superior to PSA in distinguishing PCa from negative prostate biopsies when PSA levels were less than 20 ng/ml [AUC (MET . PSA]: 0.836 ± 0.050 . 0.656 ± 0.067, p<0.001]. In the validation set, the MET panel yielded an AUC of 0.823 in distinguishing PCa patients from healthy controls, showing a significant improvement of PCa detection.

CONCLUSIONS

The metabolite biomarker panel discovered in this study presents a good diagnostic performance for the detection of PCa.

摘要

目的

通过血清代谢谱分析鉴定并验证一种生物标志物组合,以改善前列腺癌(PCa)的诊断。

材料与方法

本研究共纳入134名个体。其中,39例PCa患者和45例对照患者(前列腺活检阴性)参与发现阶段,50名健康对照者纳入代谢组学研究的验证阶段。采用液相色谱 - 质谱分析(LC-MS Analysis)鉴定患者的血清代谢物。

结果

逻辑回归分析显示,与对照患者相比,PCa患者的5种代谢物[dMePE(18:0/18:2)、PC(16:0/20:2)、PS(15:0/18:2)、SM(d16:0/24:1)、肉碱C14:0]有显著变化。计算得出一个代谢物组合(MET),在区分PCa患者与对照患者方面,其诊断性能显著高于前列腺特异抗原(PSA)[曲线下面积(AUC)(MET. PSA):0.823±0.046. 0.712±0.057,p<0.001]。此外,当PSA水平低于20 ng/ml时,该组合在区分PCa与前列腺活检阴性患者方面优于PSA [AUC(MET. PSA):0.836±0.050. 0.656±0.067,p<0.001]。在验证集中,MET组合区分PCa患者与健康对照者的AUC为0.823,显示出PCa检测的显著改善。

结论

本研究发现的代谢物生物标志物组合在PCa检测中具有良好的诊断性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a989/8138432/7ac0aa6cc8d7/fonc-11-666320-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验