Blomeier Tim, Fischbach Patrick, Koch Leonie-Alexa, Andres Jennifer, Miñambres Miguel, Beyer Hannes Michael, Zurbriggen Matias Daniel
Institute of Synthetic Biology and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany.
Institute of Plant Biochemistry and CEPLAS, University of Düsseldorf, Düsseldorf, 40225, Germany.
Adv Biol (Weinh). 2021 May;5(5):e2000307. doi: 10.1002/adbi.202000307. Epub 2021 Feb 11.
The introduction of optogenetics into cell biology has furnished systems to control gene expression at the transcriptional and protein stability level, with a high degree of spatial, temporal, and dynamic light-regulation capabilities. Strategies to downregulate RNA currently rely on RNA interference and CRISPR/Cas-related methods. However, these approaches lack the key characteristics and advantages provided by optical control. "Lockdown" introduces optical control of RNA levels utilizing a blue light-dependent switch to induce expression of CRISPR/Cas13b, which mediates sequence-specific mRNA knockdown. Combining Lockdown with optogenetic tools to repress gene-expression and induce protein destabilization with blue light yields efficient triple-controlled downregulation of target proteins. Implementing Lockdown to degrade endogenous mRNA levels of the cyclin-dependent kinase 1 (hCdk1) leads to blue light-induced G2/M cell cycle arrest and inhibition of cell growth in mammalian cells.
光遗传学引入细胞生物学后,提供了在转录和蛋白质稳定性水平上控制基因表达的系统,具有高度的空间、时间和动态光调节能力。目前,下调RNA的策略依赖于RNA干扰和CRISPR/Cas相关方法。然而,这些方法缺乏光学控制所具备的关键特性和优势。“锁定”技术利用蓝光依赖开关诱导CRISPR/Cas13b的表达,从而实现对RNA水平的光学控制,CRISPR/Cas13b可介导序列特异性的mRNA敲低。将“锁定”技术与光遗传学工具相结合,利用蓝光抑制基因表达并诱导蛋白质不稳定,可实现对靶蛋白的高效三重控制下调。通过“锁定”技术降低细胞周期蛋白依赖性激酶1(hCdk1)的内源性mRNA水平,可导致蓝光诱导的G2/M期细胞周期阻滞,并抑制哺乳动物细胞的生长。