Institute of Synthetic Biology, University of Düsseldorf, Düsseldorf, Germany.
iGRAD Plant Graduate School, University of Düsseldorf, Düsseldorf, Germany.
Nat Methods. 2020 Jul;17(7):717-725. doi: 10.1038/s41592-020-0868-y. Epub 2020 Jun 29.
Optogenetics is the genetic approach for controlling cellular processes with light. It provides spatiotemporal, quantitative and reversible control over biological signaling and metabolic processes, overcoming limitations of chemically inducible systems. However, optogenetics lags in plant research because ambient light required for growth leads to undesired system activation. We solved this issue by developing plant usable light-switch elements (PULSE), an optogenetic tool for reversibly controlling gene expression in plants under ambient light. PULSE combines a blue-light-regulated repressor with a red-light-inducible switch. Gene expression is only activated under red light and remains inactive under white light or in darkness. Supported by a quantitative mathematical model, we characterized PULSE in protoplasts and achieved high induction rates, and we combined it with CRISPR-Cas9-based technologies to target synthetic signaling and developmental pathways. We applied PULSE to control immune responses in plant leaves and generated Arabidopsis transgenic plants. PULSE opens broad experimental avenues in plant research and biotechnology.
光遗传学是一种利用光来控制细胞过程的遗传方法。它提供了对生物信号和代谢过程的时空、定量和可逆控制,克服了化学诱导系统的局限性。然而,光遗传学在植物研究中滞后,因为生长所需的环境光会导致不期望的系统激活。我们通过开发植物可用的光开关元件(PULSE)解决了这个问题,这是一种在环境光下可逆控制植物基因表达的光遗传学工具。PULSE 将蓝光调控的抑制剂与红光诱导的开关结合在一起。只有在红光下,基因表达才会被激活,而在白光或黑暗中则保持不活跃。在定量数学模型的支持下,我们在原生质体中对 PULSE 进行了表征,实现了高诱导率,并将其与基于 CRISPR-Cas9 的技术相结合,以靶向合成信号和发育途径。我们将 PULSE 应用于控制植物叶片中的免疫反应,并生成了拟南芥转基因植物。PULSE 为植物研究和生物技术开辟了广泛的实验途径。