Suppr超能文献

基于 2D 经会阴超声图像的人工智能模型在压力性尿失禁临床诊断中的应用。

Artificial intelligence models derived from 2D transperineal ultrasound images in the clinical diagnosis of stress urinary incontinence.

机构信息

Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-Sen University, NO.600 Tianhe Road, Guangzhou, 510630, Guangdong Province, China.

Artificial Intelligence Innovation Center, Research Institute of Tsinghua, Pearl River Delta; No. 98 Xiangxue 8th Road, Guangzhou, 510530, Guangdong Province, China.

出版信息

Int Urogynecol J. 2022 May;33(5):1179-1185. doi: 10.1007/s00192-021-04859-y. Epub 2021 May 24.

Abstract

INTRODUCTION AND HYPOTHESIS

The aim of the study was to develop artificial intelligence (AI) algorithms using 2D transperineal ultrasound (TPUS) static images to simplify the clinical process of diagnosing stress urinary incontinence (SUI) in practice.

METHODS

The study involved 400 patients in total, including 265 SUI patients and 135 non-SUI patients who underwent a routine clinical evaluation process by urologists and TPUS. They were classified into different groups based on the International Consultation on Incontinence Questionnaire (ICIQ) to assess the impact of inconvenience on patients' lives. Four AI models were developed by 2D TPUS images: Model A (a single-mode model based on Valsalva maneuver images to classify G-0, G-1, and G-2); Model B (a dual-mode model based on Valsalva maneuver and resting state images to classify G-0, G-1, and G-2); Model C (a single-mode model based on Valsalva maneuver images to classify G-2 and G-01); Model D (a dual-mode model based on Valsalva maneuver and resting state images to classify G-2 and G-01). The performance of the four models was evaluated by confusion matrices and the area under the receiver-operating characteristic curve (AUC).

RESULTS

The dual-mode model based on the Valsalva maneuver and resting-state images (Model D) had a higher accuracy of 86.3% and an AUC of 0.922, which was significantly higher than the AUCs of the other three models: 0.771, 0.862, and 0.827.

CONCLUSIONS

The AI algorithm using 2D TPUS static images of the Valsalva maneuver and resting state may be a promising tool in the diagnosis of SUI patients in to relieve clinical processes in practice given its ease of use in clinical applications.

摘要

简介与假设

本研究旨在开发人工智能(AI)算法,使用 2 维经会阴超声(TPUS)静态图像来简化实践中诊断压力性尿失禁(SUI)的临床过程。

方法

本研究共纳入 400 例患者,包括 265 例 SUI 患者和 135 例非 SUI 患者,他们均接受泌尿科医生和 TPUS 的常规临床评估,并根据国际尿失禁咨询委员会问卷(ICIQ)进行分类,以评估对患者生活不便的影响。通过 2D TPUS 图像开发了 4 种 AI 模型:模型 A(基于valsalva 动作图像的单模态模型,用于分类 G-0、G-1 和 G-2);模型 B(基于valsalva 动作和静息状态图像的双模态模型,用于分类 G-0、G-1 和 G-2);模型 C(基于 valsalva 动作图像的单模态模型,用于分类 G-2 和 G-01);模型 D(基于 valsalva 动作和静息状态图像的双模态模型,用于分类 G-2 和 G-01)。通过混淆矩阵和受试者工作特征曲线下面积(AUC)评估了四种模型的性能。

结果

基于 valsalva 动作和静息状态图像的双模态模型(模型 D)的准确率为 86.3%,AUC 为 0.922,显著高于其他三种模型的 AUC:0.771、0.862 和 0.827。

结论

使用 2D TPUS 静态图像的 AI 算法可能是一种很有前途的工具,可用于诊断 SUI 患者,简化实践中的临床流程,因其易于在临床应用中使用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验