Suppr超能文献

两种智能手机应用程序碳水化合物计数准确性的前瞻性独立评估。

Prospective Independent Evaluation of the Carbohydrate Counting Accuracy of Two Smartphone Applications.

作者信息

Joubert Michael, Meyer Laurent, Doriot Aline, Dreves Bleuenn, Jeandidier Nathalie, Reznik Yves

机构信息

Diabetes Care Unit, Caen University Hospital, Caen, France.

Diabetes Care Unit, Strasbourg University Hospital, Strasbourg, France.

出版信息

Diabetes Ther. 2021 Jul;12(7):1809-1820. doi: 10.1007/s13300-021-01082-2. Epub 2021 May 24.

Abstract

INTRODUCTION

Smartphone applications (apps) have been designed that help patients to accurately count their carbohydrate intake in order to optimize prandial insulin dose matching. Our aim was to evaluate the accuracy of two carbohydrate (carb) counting apps.

METHODS

Medical students, in the role of mock patients, evaluated meals using two smartphone apps: Foodvisor (which uses automatic food photo recognition technology) and Glucicheck (which requires the manual entry of carbohydrates with the help of a photo gallery). The macronutrient quantifications obtained with these two apps were compared to a reference quantification.

RESULTS

The carbohydrate content of the entire meal was underestimated with Foodvisor (Foodvisor quantification minus gold standard quantification = - 7.2 ± 17.3 g; p < 0.05) but reasonably accurately estimated with Glucicheck (Glucicheck quantification minus gold standard quantification = 1.4 ± 13.4 g; ns). The percentage of meals with an absolute error in carbohydrate quantification above 20 g was greater for Foodvisor compared to Glucicheck (30% vs 14%; p < 0.01).

CONCLUSION

The carb counting accuracy was slightly better when using Glucicheck compared to Foodvisor. However, both apps provided a lower mean absolute carb counting error than that usually made by T1D patients in everyday life, suggesting that such apps may be a useful adjunct for estimating carbohydrate content.

摘要

引言

已设计出智能手机应用程序(应用)来帮助患者准确计算碳水化合物摄入量,以优化餐时胰岛素剂量匹配。我们的目的是评估两款碳水化合物计数应用的准确性。

方法

医学生扮演模拟患者,使用两款智能手机应用评估餐食:Foodvisor(使用自动食物照片识别技术)和Glucicheck(需要借助照片库手动输入碳水化合物含量)。将这两款应用获得的常量营养素定量与参考定量进行比较。

结果

Foodvisor低估了整餐的碳水化合物含量(Foodvisor定量减去金标准定量 = -7.2 ± 17.3克;p < 0.05),而Glucicheck的估计较为准确(Glucicheck定量减去金标准定量 = 1.4 ± 13.4克;无显著差异)。与Glucicheck相比,Foodvisor碳水化合物定量绝对误差超过20克的餐食比例更高(30% 对14%;p < 0.01)。

结论

与Foodvisor相比,使用Glucicheck时碳水化合物计数准确性略好。然而,两款应用的平均碳水化合物计数绝对误差均低于1型糖尿病患者在日常生活中的通常误差,这表明此类应用可能是估计碳水化合物含量的有用辅助工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验