Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados - UFGD, Dourados, Mato Grosso do Sul, Brazil.
S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, 79117900, Brazil.
Res Microbiol. 2021 Jun-Aug;172(4-5):103837. doi: 10.1016/j.resmic.2021.103837. Epub 2021 May 21.
Klebsiella pneumoniae causes common and severe hospital- and community-acquired infections with a high incidence of multidrug resistance (MDR) and mortality. In this study, we investigated the ability of the antisense peptide nucleic acids (PNA) conjugated to the (KFF)3K cell-penetrating peptide (CPP) to target the gyrA KPC-producing K. pneumoniae and inhibit bacterial growth in vitro. The inhibitory effect on gyrA gene was evaluated by measuring 16s gene amplification in KPC-producing K. pneumoniae treated with the antisense PNA conjugate. The hemolytic property of the antisense PNA conjugate was accessed toward mice red blood cells. Finally, molecular modeling and dynamics simulations analyses in aqueous solutions were performed to predict the PNA conformation alone in contact with DNA (gyrA gene sequence). PNA was capable of inhibiting bacterial growth at 50 μM, also reducing 16S gene amplification in 96.7%. Besides, PNA presented low hemolytic activity (21.1% hemolysis) at this same concentration. Bioinformatics analysis demonstrated that the structure of the PNA is stable in water without major changes in its secondary structure. The ability of PNA and its conjugated CPP ((KFF)3K) to inhibit bacterial growth demonstrates the potential of this new class of antibacterial agents, encouraging further in vivo studies to confirm its therapeutic efficacy.
肺炎克雷伯菌可引起常见且严重的医院获得性和社区获得性感染,其具有较高的多重耐药性(MDR)发生率和死亡率。在本研究中,我们研究了与穿膜肽(CPP)(KFF)3K 偶联的反义肽核酸(PNA)靶向产 KPC 肺炎克雷伯菌的能力,并在体外抑制细菌生长。通过测量产 KPC 肺炎克雷伯菌中 16s 基因的扩增来评估反义 PNA 偶联物对 gyrA 基因的抑制作用。反义 PNA 偶联物的溶血性质通过对小鼠红细胞进行评估。最后,在水溶液中进行分子建模和动力学模拟分析,以预测 PNA 与 DNA(gyrA 基因序列)单独接触时的构象。PNA 在 50 μM 时能够抑制细菌生长,同时使 16S 基因扩增减少 96.7%。此外,在相同浓度下,PNA 的溶血活性较低(21.1%溶血)。生物信息学分析表明,PNA 在水中的结构稳定,其二级结构没有发生重大变化。PNA 及其偶联 CPP((KFF)3K)抑制细菌生长的能力表明了这种新型抗菌剂的潜力,鼓励进一步进行体内研究以确认其治疗效果。