Suppr超能文献

采用基于模型的方法评估工业废水中的碱性稳定化过程。

Assessment of alkaline stabilization processes in industrial waste streams using a model-based approach.

机构信息

Process and Systems Engineering Centre (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark. Building, 229, DK-2800, Kgs. Lyngby, Denmark.

Novozymes A/S, Hallas Alle 1, DK-4400, Kalundborg, Denmark.

出版信息

J Environ Manage. 2021 Sep 1;293:112806. doi: 10.1016/j.jenvman.2021.112806. Epub 2021 May 21.

Abstract

Chemical conditioning prior to disposal is a common practice in biotech companies to stabilize the biological waste generated during production. Nevertheless, the state of the art models used to analyze management strategies in water treatment systems (WTS) do not include the effect of high alkaline conditions during bio-solids processing. In this paper, the prediction capabilities of a novel model-based approach describing the effect of quicklime addition (CaO) on the waste streams of an industrial WTS is assessed. Two measuring campaigns were carried out taking samples of TSS, VSS and total/soluble COD, N, P, S and multiple metals before and after chemical stabilization, and dewatering under and overflow. Mass balances were set up and Sankey diagrams were generated to represent the occurrence, transformation and fate of the major compounds within the studied facility. A simulation model was used to predict plant at different locations. Next, a scenario analysis was carried out in order to assess potential alternatives to the current operational practice. The resulting mass balances show a mismatch between the system's input and output up to 17%. It was also possible to identify different types of compound-behavior depending on the effect that high pH induced on the soluble and particulate fractions: hydrolysis, precipitation and unaltered. Model predictions and measurements differed 9.6% (steady state) and 12.4% (dynamic state) respectively. Finally, in the scenario analysis, the model suggested that the change from quicklime to sodium hydroxide (NaOH) would increase the quantity of organics in the dewatered cake (+23%), but with a considerable increase in chemical consumption (+50%). The selective stabilization of the incoming streams has the lowest use of chemicals (-30%) and reduces the load of CODsol (-13%) and TNsol (-14%) recirculated to the water line of the WWTP.

摘要

化学预处理是生物技术公司的常见做法,用于稳定生产过程中产生的生物废物。然而,用于分析水处理系统(WTS)管理策略的最先进模型并未包括生物污泥处理过程中高碱性条件的影响。本文评估了一种新的基于模型的方法对工业 WTS 废物流中添加生石灰(CaO)的影响的预测能力。进行了两次测量活动,在化学稳定化和脱水之前和之后,以及在溢出和下溢条件下,对 TSS、VSS 和总/可溶性 COD、N、P、S 和多种金属进行了取样。建立了质量平衡,并生成了 Sankey 图,以表示研究设施中主要化合物的出现、转化和命运。使用模拟模型来预测工厂在不同位置的情况。然后,进行了情景分析,以评估当前操作实践的潜在替代方案。产生的质量平衡显示系统的输入和输出之间存在高达 17%的不匹配。还可以根据高 pH 对可溶性和颗粒性分数的影响来识别不同类型的化合物行为:水解、沉淀和未改变。模型预测和测量分别相差 9.6%(稳态)和 12.4%(动态状态)。最后,在情景分析中,模型表明,从生石灰改为氢氧化钠(NaOH)将增加脱水饼中的有机物数量(增加 23%),但化学消耗会大幅增加(增加 50%)。对输入流进行选择性稳定化的化学品用量最低(减少 30%),并减少了回流到 WWTP 水线的 CODsol(减少 13%)和 TNsol(减少 14%)的负荷。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验