Suppr超能文献

基于 RNAseq 的可变剪接分析的改进方法。

Improved methods for RNAseq-based alternative splicing analysis.

机构信息

Quantitative Medicine and Systems Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA.

Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA.

出版信息

Sci Rep. 2021 May 24;11(1):10740. doi: 10.1038/s41598-021-89938-2.

Abstract

The robust detection of disease-associated splice events from RNAseq data is challenging due to the potential confounding effect of gene expression levels and the often limited number of patients with relevant RNAseq data. Here we present a novel statistical approach to splicing outlier detection and differential splicing analysis. Our approach tests for differences in the percentages of sequence reads representing local splice events. We describe a software package called Bisbee which can predict the protein-level effect of splice alterations, a key feature lacking in many other splicing analysis resources. We leverage Bisbee's prediction of protein level effects as a benchmark of its capabilities using matched sets of RNAseq and mass spectrometry data from normal tissues. Bisbee exhibits improved sensitivity and specificity over existing approaches and can be used to identify tissue-specific splice variants whose protein-level expression can be confirmed by mass spectrometry. We also applied Bisbee to assess evidence for a pathogenic splicing variant contributing to a rare disease and to identify tumor-specific splice isoforms associated with an oncogenic mutation. Bisbee was able to rediscover previously validated results in both of these cases and also identify common tumor-associated splice isoforms replicated in two independent melanoma datasets.

摘要

由于基因表达水平的潜在混杂效应以及相关 RNAseq 数据通常数量有限,因此从 RNAseq 数据中稳健地检测与疾病相关的剪接事件具有挑战性。在这里,我们提出了一种新的统计方法来进行剪接异常检测和差异剪接分析。我们的方法测试代表局部剪接事件的序列读取百分比的差异。我们描述了一个名为 Bisbee 的软件包,它可以预测剪接改变的蛋白质水平效应,这是许多其他剪接分析资源所缺乏的关键特征。我们利用 Bisbee 对蛋白质水平效应的预测作为其使用来自正常组织的 RNAseq 和质谱数据的匹配集的能力的基准。Bisbee 在灵敏度和特异性方面均优于现有方法,可用于识别其蛋白质水平表达可通过质谱证实的组织特异性剪接变体。我们还应用 Bisbee 来评估导致罕见疾病的致病性剪接变体的证据,并鉴定与致癌突变相关的肿瘤特异性剪接异构体。在这两种情况下,Bisbee 都能够重新发现先前验证的结果,并在两个独立的黑色素瘤数据集复制常见的肿瘤相关剪接异构体。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/058d/8144374/6f46a3026e1e/41598_2021_89938_Fig1_HTML.jpg

相似文献

1
Improved methods for RNAseq-based alternative splicing analysis.
Sci Rep. 2021 May 24;11(1):10740. doi: 10.1038/s41598-021-89938-2.
3
Prediction and Quantification of Splice Events from RNA-Seq Data.
PLoS One. 2016 May 24;11(5):e0156132. doi: 10.1371/journal.pone.0156132. eCollection 2016.
4
Splice Expression Variation Analysis (SEVA) for inter-tumor heterogeneity of gene isoform usage in cancer.
Bioinformatics. 2018 Jun 1;34(11):1859-1867. doi: 10.1093/bioinformatics/bty004.
5
Alternative splicing detection workflow needs a careful combination of sample prep and bioinformatics analysis.
BMC Bioinformatics. 2015;16 Suppl 9(Suppl 9):S2. doi: 10.1186/1471-2105-16-S9-S2. Epub 2015 Jun 1.
7
PASTA: splice junction identification from RNA-sequencing data.
BMC Bioinformatics. 2013 Apr 4;14:116. doi: 10.1186/1471-2105-14-116.
8
SplicingCompass: differential splicing detection using RNA-seq data.
Bioinformatics. 2013 May 1;29(9):1141-8. doi: 10.1093/bioinformatics/btt101. Epub 2013 Feb 28.
9
Alternative splicing and ACMG-AMP-2015-based classification of PALB2 genetic variants: an ENIGMA report.
J Med Genet. 2019 Jul;56(7):453-460. doi: 10.1136/jmedgenet-2018-105834. Epub 2019 Mar 19.
10
Determination of Differential Alternative Splicing Under Stress Conditions.
Methods Mol Biol. 2024;2832:67-79. doi: 10.1007/978-1-0716-3973-3_5.

引用本文的文献

3
Selecting differential splicing methods: Practical considerations for short-read RNA sequencing.
F1000Res. 2025 May 30;14:47. doi: 10.12688/f1000research.155223.2. eCollection 2025.
4
6
Long noncoding RNAs in acute myeloid leukemia: biomarkers, prognostic indicators, and treatment potential.
Cancer Cell Int. 2025 Apr 5;25(1):131. doi: 10.1186/s12935-025-03763-5.
7
Transcriptome Analysis Reveals Norathyriol Prolongs the Lifespan via Regulating Metabolism in .
Metabolites. 2024 Dec 19;14(12):716. doi: 10.3390/metabo14120716.
9
Splicing the Difference: Harnessing the Complexity of the Transcriptome in Hematopoiesis.
Exp Hematol. 2024 Dec;140:104655. doi: 10.1016/j.exphem.2024.104655. Epub 2024 Oct 10.
10
Short-Read RNA-Seq.
Methods Mol Biol. 2024;2822:245-262. doi: 10.1007/978-1-0716-3918-4_17.

本文引用的文献

1
LeafCutterMD: an algorithm for outlier splicing detection in rare diseases.
Bioinformatics. 2020 Nov 1;36(17):4609-4615. doi: 10.1093/bioinformatics/btaa259.
2
Alternative mRNA splicing in cancer immunotherapy.
Nat Rev Immunol. 2019 Nov;19(11):675-687. doi: 10.1038/s41577-019-0195-7. Epub 2019 Jul 30.
3
Improving Silkworm Genome Annotation Using a Proteogenomics Approach.
J Proteome Res. 2019 Aug 2;18(8):3009-3019. doi: 10.1021/acs.jproteome.8b00965. Epub 2019 Jul 2.
4
PASS: A Proteomics Alternative Splicing Screening Pipeline.
Proteomics. 2019 Jul;19(13):e1900041. doi: 10.1002/pmic.201900041. Epub 2019 Jun 13.
5
Proteogenomic Analysis of Human Colon Cancer Reveals New Therapeutic Opportunities.
Cell. 2019 May 2;177(4):1035-1049.e19. doi: 10.1016/j.cell.2019.03.030. Epub 2019 Apr 25.
6
Leveraging Spatial Variation in Tumor Purity for Improved Somatic Variant Calling of Archival Tumor Only Samples.
Front Oncol. 2019 Mar 20;9:119. doi: 10.3389/fonc.2019.00119. eCollection 2019.
7
Leigh syndrome caused by mutations in is associated with a better prognosis.
Ann Clin Transl Neurol. 2019 Feb 17;6(3):515-524. doi: 10.1002/acn3.725. eCollection 2019 Mar.
8
A deep proteome and transcriptome abundance atlas of 29 healthy human tissues.
Mol Syst Biol. 2019 Feb 18;15(2):e8503. doi: 10.15252/msb.20188503.
9
ASV-ID, a Proteogenomic Workflow To Predict Candidate Protein Isoforms on the Basis of Transcript Evidence.
J Proteome Res. 2018 Dec 7;17(12):4235-4242. doi: 10.1021/acs.jproteome.8b00548. Epub 2018 Oct 15.
10
Cancer-Specific Splicing Changes and the Potential for Splicing-Derived Neoantigens.
Cancer Cell. 2018 Aug 13;34(2):181-183. doi: 10.1016/j.ccell.2018.07.008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验