Suppr超能文献

基于 RNA-seq 数据的可变剪接注释和差异分析的组装优先与映射优先方法的互补性。

Complementarity of assembly-first and mapping-first approaches for alternative splicing annotation and differential analysis from RNAseq data.

机构信息

Université de Lyon, ENS de Lyon, Université Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée d'Italie Site Jacques Monod, F-69007, Lyon, France.

IRISA Inria Rennes Bretagne Atlantique CNRS UMR 6074, Université Rennes 1, GenScale team, Rennes, 263 Avenue Général Leclerc, Rennes, France.

出版信息

Sci Rep. 2018 Mar 9;8(1):4307. doi: 10.1038/s41598-018-21770-7.

Abstract

Genome-wide analyses estimate that more than 90% of multi exonic human genes produce at least two transcripts through alternative splicing (AS). Various bioinformatics methods are available to analyze AS from RNAseq data. Most methods start by mapping the reads to an annotated reference genome, but some start by a de novo assembly of the reads. In this paper, we present a systematic comparison of a mapping-first approach (FARLINE) and an assembly-first approach (KISSPLICE). We applied these methods to two independent RNAseq datasets and found that the predictions of the two pipelines overlapped (70% of exon skipping events were common), but with noticeable differences. The assembly-first approach allowed to find more novel variants, including novel unannotated exons and splice sites. It also predicted AS in recently duplicated genes. The mapping-first approach allowed to find more lowly expressed splicing variants, and splice variants overlapping repeats. This work demonstrates that annotating AS with a single approach leads to missing out a large number of candidates, many of which are differentially regulated across conditions and can be validated experimentally. We therefore advocate for the combined use of both mapping-first and assembly-first approaches for the annotation and differential analysis of AS from RNAseq datasets.

摘要

全基因组分析估计,超过 90%的多外显子人类基因通过选择性剪接 (AS) 产生至少两种转录本。有各种生物信息学方法可用于从 RNAseq 数据中分析 AS。大多数方法首先将读取映射到注释的参考基因组,但有些方法首先从头组装读取。在本文中,我们对基于映射的方法(FARLINE)和基于组装的方法(KISSPLICE)进行了系统比较。我们将这些方法应用于两个独立的 RNAseq 数据集,发现两个管道的预测重叠(70%的外显子跳跃事件是共同的),但存在明显差异。基于组装的方法可以找到更多的新型变体,包括新的未注释外显子和剪接位点。它还预测了最近复制基因中的 AS。基于映射的方法可以找到更多低表达的剪接变体,以及与重复重叠的剪接变体。这项工作表明,仅使用一种方法进行 AS 注释会导致大量候选物丢失,其中许多在不同条件下是差异调控的,可以通过实验验证。因此,我们主张结合使用基于映射和基于组装的方法,对 RNAseq 数据集的 AS 进行注释和差异分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4265/5844962/bd846e6cf321/41598_2018_21770_Fig1_HTML.jpg

相似文献

2
RNA-Seq Analysis of Differential Splice Junction Usage and Intron Retentions by DEXSeq.
PLoS One. 2015 Sep 1;10(9):e0136653. doi: 10.1371/journal.pone.0136653. eCollection 2015.
3
SplicingCompass: differential splicing detection using RNA-seq data.
Bioinformatics. 2013 May 1;29(9):1141-8. doi: 10.1093/bioinformatics/btt101. Epub 2013 Feb 28.
4
ASGAL: aligning RNA-Seq data to a splicing graph to detect novel alternative splicing events.
BMC Bioinformatics. 2018 Nov 20;19(1):444. doi: 10.1186/s12859-018-2436-3.
5
Improved methods for RNAseq-based alternative splicing analysis.
Sci Rep. 2021 May 24;11(1):10740. doi: 10.1038/s41598-021-89938-2.
6
Prediction and Quantification of Splice Events from RNA-Seq Data.
PLoS One. 2016 May 24;11(5):e0156132. doi: 10.1371/journal.pone.0156132. eCollection 2016.
7
SplicingTypesAnno: annotating and quantifying alternative splicing events for RNA-Seq data.
Comput Methods Programs Biomed. 2015 Apr;119(1):53-62. doi: 10.1016/j.cmpb.2015.02.004. Epub 2015 Feb 14.
8
Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors.
Nucleic Acids Res. 2014 Mar;42(5):2856-69. doi: 10.1093/nar/gkt1338. Epub 2013 Dec 24.
9
CASH: a constructing comprehensive splice site method for detecting alternative splicing events.
Brief Bioinform. 2018 Sep 28;19(5):905-917. doi: 10.1093/bib/bbx034.
10
Alternative splicing detection workflow needs a careful combination of sample prep and bioinformatics analysis.
BMC Bioinformatics. 2015;16 Suppl 9(Suppl 9):S2. doi: 10.1186/1471-2105-16-S9-S2. Epub 2015 Jun 1.

引用本文的文献

6
7
Mutations in the non-coding RNU4ATAC gene affect the homeostasis and function of the Integrator complex.
Nucleic Acids Res. 2023 Jan 25;51(2):712-727. doi: 10.1093/nar/gkac1182.

本文引用的文献

3
Differential Expression of OCT4 Pseudogenes in Pluripotent and Tumor Cell Lines.
Cell J. 2016 Spring;18(1):28-36. doi: 10.22074/cellj.2016.3984. Epub 2016 Apr 4.
4
Design and computational analysis of single-cell RNA-sequencing experiments.
Genome Biol. 2016 Apr 7;17:63. doi: 10.1186/s13059-016-0927-y.
5
RNA mis-splicing in disease.
Nat Rev Genet. 2016 Jan;17(1):19-32. doi: 10.1038/nrg.2015.3. Epub 2015 Nov 23.
6
In Vitro and In Vivo Modulation of Alternative Splicing by the Biguanide Metformin.
Mol Ther Nucleic Acids. 2015 Nov 3;4(11):e262. doi: 10.1038/mtna.2015.35.
7
Determining exon connectivity in complex mRNAs by nanopore sequencing.
Genome Biol. 2015 Sep 30;16:204. doi: 10.1186/s13059-015-0777-z.
8
Cytoscape.js: a graph theory library for visualisation and analysis.
Bioinformatics. 2016 Jan 15;32(2):309-11. doi: 10.1093/bioinformatics/btv557. Epub 2015 Sep 28.
9
A pan-cancer analysis of alternative splicing events reveals novel tumor-associated splice variants of matriptase.
Cancer Inform. 2014 Dec 4;13:167-77. doi: 10.4137/CIN.S19435. eCollection 2014.
10
Defining a personal, allele-specific, and single-molecule long-read transcriptome.
Proc Natl Acad Sci U S A. 2014 Jul 8;111(27):9869-74. doi: 10.1073/pnas.1400447111. Epub 2014 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验