Suppr超能文献

可穿戴传感器技术在手关节角度测量中的准确性:系统评价。

Accuracy of Wearable Sensor Technology in Hand Goniometry: A Systematic Review.

机构信息

Division of Plastic Surgery, Mayo Clinic, Jacksonville, FL, USA.

Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA.

出版信息

Hand (N Y). 2023 Mar;18(2):340-348. doi: 10.1177/15589447211014606. Epub 2021 May 25.

Abstract

BACKGROUND

Wearable devices and sensor technology provide objective, unbiased range of motion measurements that help health care professionals overcome the hindrances of protractor-based goniometry. This review aims to analyze the accuracy of existing wearable sensor technologies for hand range of motion measurement and identify the most accurate one.

METHODS

We performed a systematic review by searching PubMed, CINAHL, and Embase for studies evaluating wearable sensor technology in hand range of motion assessment. Keywords used for the inquiry were related to wearable devices and hand goniometry.

RESULTS

Of the 71 studies, 11 met the inclusion criteria. Ten studies evaluated gloves and 1 evaluated a wristband. The most common types of sensors used were bend sensors, followed by inertial sensors, Hall effect sensors, and magnetometers. Most studies compared wearable devices with manual goniometry, achieving optimal accuracy. Although most of the devices reached adequate levels of measurement error, accuracy evaluation in the reviewed studies might be subject to bias owing to the use of poorly reliable measurement techniques for comparison of the devices.

CONCLUSION

Gloves using inertial sensors were the most accurate. Future studies should use different comparison techniques, such as infrared camera-based goniometry or virtual motion tracking, to evaluate the performance of wearable devices.

摘要

背景

可穿戴设备和传感器技术提供了客观、无偏的运动范围测量,帮助医疗保健专业人员克服了基于量角器的关节角度测量的障碍。本综述旨在分析现有的可穿戴传感器技术在手运动范围测量中的准确性,并确定最准确的技术。

方法

我们通过搜索 PubMed、CINAHL 和 Embase 来进行系统评价,以评估可穿戴传感器技术在手关节角度测量中的应用。查询中使用的关键词与可穿戴设备和手部关节角度测量有关。

结果

在 71 项研究中,有 11 项符合纳入标准。其中 10 项研究评估了手套,1 项研究评估了腕带。最常用的传感器类型是弯曲传感器,其次是惯性传感器、霍尔效应传感器和磁力计。大多数研究将可穿戴设备与手动关节角度测量进行了比较,达到了最佳的准确性。尽管大多数设备的测量误差达到了足够的水平,但由于用于比较设备的测量技术不可靠,因此在综述研究中进行准确性评估可能存在偏倚。

结论

使用惯性传感器的手套是最准确的。未来的研究应使用不同的比较技术,如基于红外摄像机的关节角度测量或虚拟运动跟踪,来评估可穿戴设备的性能。

相似文献

1
Accuracy of Wearable Sensor Technology in Hand Goniometry: A Systematic Review.
Hand (N Y). 2023 Mar;18(2):340-348. doi: 10.1177/15589447211014606. Epub 2021 May 25.
4
Improving Kinematic Accuracy of Soft Wearable Data Gloves by Optimizing Sensor Locations.
Sensors (Basel). 2016 May 26;16(6):766. doi: 10.3390/s16060766.
5
Applications of wearable sensors in upper extremity MSK conditions: a scoping review.
J Neuroeng Rehabil. 2023 Nov 18;20(1):158. doi: 10.1186/s12984-023-01274-w.
6
Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: A review.
J Hand Ther. 2020 Apr-Jun;33(2):180-187. doi: 10.1016/j.jht.2019.12.021. Epub 2020 Apr 9.
8
10

引用本文的文献

1
Deep Learning-Assisted Triboelectric Sensor for Complex Gesture Recognition.
ACS Omega. 2025 Feb 26;10(9):9381-9389. doi: 10.1021/acsomega.4c10150. eCollection 2025 Mar 11.

本文引用的文献

1
Ultrasensitive Magnetic Field Sensors for Biomedical Applications.
Sensors (Basel). 2020 Mar 11;20(6):1569. doi: 10.3390/s20061569.
5
Wearable sensors to improve detection of patient deterioration.
Expert Rev Med Devices. 2019 Feb;16(2):145-154. doi: 10.1080/17434440.2019.1563480. Epub 2019 Jan 6.
6
A Wearable Detector for Simultaneous Finger Joint Motion Measurement.
IEEE Trans Biomed Circuits Syst. 2018 Jun;12(3):644-654. doi: 10.1109/TBCAS.2018.2810182.
7
Design of an Inertial-Sensor-Based Data Glove for Hand Function Evaluation.
Sensors (Basel). 2018 May 13;18(5):1545. doi: 10.3390/s18051545.
8
At Home Photography-Based Method for Measuring Wrist Range of Motion.
J Wrist Surg. 2017 Nov;6(4):280-284. doi: 10.1055/s-0037-1599830. Epub 2017 Mar 14.
9
Viability of Hand and Wrist Photogoniometry.
Hand (N Y). 2018 May;13(3):301-304. doi: 10.1177/1558944717702471. Epub 2017 Apr 9.
10
A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System.
Sensors (Basel). 2017 Feb 22;17(2):420. doi: 10.3390/s17020420.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验