Suppr超能文献

膜囊泡介导的抗真菌 HSAF 代谢物和溶细胞多糖单加氧酶共递送至捕食性

Outer Membrane Vesicle-Mediated Codelivery of the Antifungal HSAF Metabolites and Lytic Polysaccharide Monooxygenase in the Predatory .

机构信息

Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588-0304, United States.

出版信息

ACS Chem Biol. 2021 Jun 18;16(6):1079-1089. doi: 10.1021/acschembio.1c00260. Epub 2021 May 25.

Abstract

are new biocontrol agents known for their prolific production of lytic enzymes and bioactive metabolites. is a predator of fungi and produces several structurally distinct antimicrobial compounds, such as the antifungal HSAF (heat stable antifungal factor) and analogs. The mechanism by which interacts with fungal prey is not well understood. Here, we found that the production of HSAF and analogs in OH11 was significantly induced in media supplemented with ground fungal mycelia or chitin. In the OH11 genome, we identified a gene () that was annotated to encode a chitin-binding protein. The stimulation of HSAF and analogs by chitin was diminished when was deleted. We expressed the gene in and demonstrated that purified LeLPMO10A oxidatively cleaved chitin into oligomeric products, including 1,5 δ-lactones and aldonic acids. The results revealed that encodes a lytic polysaccharide monooxygenase, which has not been reported in . The metabolite analysis, antifungal assay, and proteomic analysis showed that the antifungal compounds and the chitin-cleaving LeLPMO10A are colocalized in outer membrane vesicles. The enzymatic products that resulted from LeLPMO10A-cleaved chitin also significantly induced HSAF and analogs in OH11. Scanning electron microscopic analysis indicated that spherical vesicles were formed outside of OH11 cells, and fewer OH11 cells were observed to attach to fungal hyphae when was deleted. Together, the study revealed a previously uncharacterized synergistic strategy utilized by the predatory during interaction with fungal prey.

摘要

是一种真菌捕食者,能够产生多种结构独特的抗菌代谢物和裂解酶。它与真菌猎物相互作用的机制尚不清楚。在这里,我们发现,在补充了真菌菌丝或几丁质的培养基中,OH11 中 HSAF(热稳定抗真菌因子)和类似物的产量显著增加。在 OH11 的基因组中,我们鉴定出一个基因 (),该基因被注释为编码一种几丁质结合蛋白。当缺失时,几丁质对 HSAF 和类似物的刺激作用减弱。我们在 中表达了该基因,并证明纯化的 LeLPMO10A 将几丁质氧化裂解成寡聚产物,包括 1,5 δ-内酰胺和醛酸。结果表明 编码一种溶细胞多糖单加氧酶,这在 中尚未报道过。代谢物分析、抗真菌测定和蛋白质组学分析表明,抗真菌化合物和裂解几丁质的 LeLPMO10A 都定位于外膜囊泡中。由 LeLPMO10A 裂解几丁质产生的酶产物也显著诱导了 OH11 中 HSAF 和类似物的产生。扫描电子显微镜分析表明,在 OH11 细胞外形成了球形囊泡,并且当缺失时,观察到更少的 OH11 细胞附着在真菌菌丝上。总之,该研究揭示了捕食性 在与真菌猎物相互作用过程中使用的一种以前未被描述的协同策略。

相似文献

1
Outer Membrane Vesicle-Mediated Codelivery of the Antifungal HSAF Metabolites and Lytic Polysaccharide Monooxygenase in the Predatory .
ACS Chem Biol. 2021 Jun 18;16(6):1079-1089. doi: 10.1021/acschembio.1c00260. Epub 2021 May 25.
3
LeTetR Positively Regulates 3-Hydroxylation of the Antifungal HSAF and Its Analogs in OH11.
Molecules. 2020 May 13;25(10):2286. doi: 10.3390/molecules25102286.
5
Characterization of Lysobacter spp. strains and their potential use as biocontrol agents against pear anthracnose.
Microbiol Res. 2021 Jan;242:126624. doi: 10.1016/j.micres.2020.126624. Epub 2020 Oct 15.
7
Lysobacter PilR, the Regulator of Type IV Pilus Synthesis, Controls Antifungal Antibiotic Production via a Cyclic di-GMP Pathway.
Appl Environ Microbiol. 2017 Mar 17;83(7). doi: 10.1128/AEM.03397-16. Print 2017 Apr 1.
9
LetR is a TetR family transcription factor from Lysobacter controlling antifungal antibiotic biosynthesis.
Appl Microbiol Biotechnol. 2017 Apr;101(8):3273-3282. doi: 10.1007/s00253-017-8117-8. Epub 2017 Jan 20.

引用本文的文献

1
4
Production of the siderophore lysochelin in rich media through maltose-promoted high-density growth of sp. 3655.
Front Microbiol. 2024 Jun 26;15:1433983. doi: 10.3389/fmicb.2024.1433983. eCollection 2024.
5
Mutational dissection of a hole hopping route in a lytic polysaccharide monooxygenase (LPMO).
Nat Commun. 2024 May 10;15(1):3975. doi: 10.1038/s41467-024-48245-w.
6
Microbial extracellular vesicles contribute to antimicrobial resistance.
PLoS Pathog. 2024 May 2;20(5):e1012143. doi: 10.1371/journal.ppat.1012143. eCollection 2024 May.
7
Old role with new feature: T2SS ATPase as a cyclic-di-GMP receptor to regulate antibiotic production.
Appl Environ Microbiol. 2024 May 21;90(5):e0041824. doi: 10.1128/aem.00418-24. Epub 2024 Apr 16.
9
The Two Faces of Bacterial Membrane Vesicles: Pathophysiological Roles and Therapeutic Opportunities.
Antibiotics (Basel). 2023 Jun 14;12(6):1045. doi: 10.3390/antibiotics12061045.

本文引用的文献

2
3
4
Polysaccharide degradation by lytic polysaccharide monooxygenases.
Curr Opin Struct Biol. 2019 Dec;59:54-64. doi: 10.1016/j.sbi.2019.02.015. Epub 2019 Apr 1.
6
Vesicular Delivery of the Antifungal Antibiotics of Lysobacter enzymogenes C3.
Appl Environ Microbiol. 2018 Oct 1;84(20). doi: 10.1128/AEM.01353-18. Print 2018 Oct 15.
7
Biosynthesis of the Polycyclic System in the Antifungal HSAF and Analogues from Lysobacter enzymogenes.
Angew Chem Int Ed Engl. 2018 May 22;57(21):6221-6225. doi: 10.1002/anie.201802488. Epub 2018 Apr 25.
8
Transcriptional and Antagonistic Responses of Biocontrol Strain OH11 to the Plant Pathogenic Oomycete .
Front Microbiol. 2017 Jun 6;8:1025. doi: 10.3389/fmicb.2017.01025. eCollection 2017.
10
Biocatalytic Total Synthesis of Ikarugamycin.
Angew Chem Int Ed Engl. 2017 Apr 3;56(15):4351-4355. doi: 10.1002/anie.201611063. Epub 2017 Jan 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验