Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), 1432, Ås, Norway.
Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-36, 45470, Mülheim an der Ruhr, Germany.
Nat Commun. 2024 May 10;15(1):3975. doi: 10.1038/s41467-024-48245-w.
Oxidoreductases have evolved tyrosine/tryptophan pathways that channel highly oxidizing holes away from the active site to avoid damage. Here we dissect such a pathway in a bacterial LPMO, member of a widespread family of C-H bond activating enzymes with outstanding industrial potential. We show that a strictly conserved tryptophan is critical for radical formation and hole transference and that holes traverse the protein to reach a tyrosine-histidine pair in the protein's surface. Real-time monitoring of radical formation reveals a clear correlation between the efficiency of hole transference and enzyme performance under oxidative stress. Residues involved in this pathway vary considerably between natural LPMOs, which could reflect adaptation to different ecological niches. Importantly, we show that enzyme activity is increased in a variant with slower radical transference, providing experimental evidence for a previously postulated trade-off between activity and redox robustness.
氧化还原酶进化出了酪氨酸/色氨酸途径,可以将高氧化性的空穴从活性位点引导开,避免损伤。在这里,我们在一种细菌 LPMO 中剖析了这样一条途径,LPMO 是一种具有出色工业应用潜力的广泛存在的 C-H 键激活酶家族成员。我们表明,一个严格保守的色氨酸对于自由基的形成和空穴的转移至关重要,并且空穴穿过蛋白质到达蛋白质表面的一个酪氨酸-组氨酸对。自由基形成的实时监测表明,空穴转移的效率与在氧化应激下酶的性能之间存在明显的相关性。在天然 LPMO 之间,参与该途径的残基变化很大,这可能反映了对不同生态位的适应。重要的是,我们表明,在一种自由基转移较慢的变体中,酶活性增加,为之前假设的活性和氧化还原稳健性之间的权衡提供了实验证据。