Suppr超能文献

多尺度量子精化方法在金属蛋白中的应用。

Multiscale Quantum Refinement Approaches for Metalloproteins.

机构信息

Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China.

出版信息

J Chem Theory Comput. 2021 Jun 8;17(6):3783-3796. doi: 10.1021/acs.jctc.1c00148. Epub 2021 May 25.

Abstract

Biomolecules with metal ion(s) (e.g., metalloproteins) play many important biological roles. However, accurate structural determination of metalloproteins, particularly those containing transition metal ion(s), is challenging due to their complicated electronic structure, complex bonding of metal ions, and high number of conformations in biomolecules. Quantum refinement, which was proposed to combine crystallographic data with computational chemistry methods by several groups, can improve the local structures of some proteins. In this study, a quantum refinement method combining several multiscale computational schemes with experimental (X-ray diffraction) information was developed for metalloproteins. Various quantum refinement approaches using different ONIOM (our own -layered integrated molecular orbital and molecular mechanics) combinations of quantum mechanics (QM), semiempirical (SE), and molecular mechanics (MM) methods were conducted to assess the performance and reliability on the refined local structure in two metalloproteins. The structures for two (Cu- or Zn-containing) metalloproteins were refined by combining two-layer ONIOM2(QM1/QM2) and ONIOM2(QM/MM) and three-layer ONIOM3(QM1/QM2/MM) schemes with experimental data. The accuracy of the quantum-refined metal binding sites was also examined and compared in these multiscale quantum refinement calculations. ONIOM3(QM/SE/MM) schemes were found to give good results with lower computational costs and were proposed to be a good choice for the multiscale computational scheme for quantum refinement calculations of metal binding site(s) in metalloproteins with high efficiency. Additionally, a two-center ONIOM approach was employed to speed up the quantum refinement calculations for the Zn metalloprotein with two remote active sites/ligands. Moreover, a recent quantum-embedding wavefunction-in-density functional theory (WF-in-DFT) method was also adopted as the high-level method in unprecedented ONIOM2(CCSD-in-B3LYP/MM) and ONIOM3(CCSD-in-B3LYP/SE/MM) calculations, which can be regarded as novel pseudo-three- and pseudo-four-layer ONIOM methods, respectively, to refine the key Zn binding site at the coupled-cluster singles and doubles (CCSD) level. These refined results indicate that multiscale quantum refinement schemes can be used to improve the structural accuracy obtained for local metal binding site(s) in metalloproteins with high efficiency.

摘要

含有金属离子(例如金属蛋白)的生物分子在许多重要的生物学过程中发挥着重要作用。然而,由于金属离子的复杂电子结构、金属离子的复杂键合以及生物分子中构象的数量众多,准确确定金属蛋白,特别是含有过渡金属离子的金属蛋白的结构具有挑战性。量子精修是由几个小组提出的,旨在通过将晶体学数据与计算化学方法相结合,来提高一些蛋白质的局部结构。在这项研究中,开发了一种结合了几种多尺度计算方案和实验(X 射线衍射)信息的金属蛋白量子精修方法。使用不同的 ONIOM(我们自己的分层综合分子轨道和分子力学)组合,对各种量子精修方法进行了不同的组合,这些组合包括量子力学(QM)、半经验(SE)和分子力学(MM)方法,以评估在两种金属蛋白中精修局部结构的性能和可靠性。通过结合两层 ONIOM2(QM1/QM2) 和 ONIOM2(QM/MM) 以及三层 ONIOM3(QM1/QM2/MM) 方案以及实验数据,对两种(含 Cu 或 Zn 的)金属蛋白的结构进行了精修。在这些多尺度量子精修计算中,还检查和比较了量子精修金属结合位点的准确性。发现 ONIOM3(QM/SE/MM) 方案具有较低的计算成本和较好的结果,是高效量子精修计算金属结合位点的多尺度计算方案的良好选择。此外,还采用了双中心 ONIOM 方法来加速具有两个远程活性位点/配体的 Zn 金属蛋白的量子精修计算。此外,还采用了最近的量子嵌入波函数密度泛函理论 (WF-in-DFT) 方法作为前所未有的 ONIOM2(CCSD-in-B3LYP/MM) 和 ONIOM3(CCSD-in-B3LYP/SE/MM) 计算中的高级方法,这可以分别被视为新型伪三层和伪四层 ONIOM 方法,以在耦合簇单双 (CCSD) 水平上精修关键的 Zn 结合位点。这些精修结果表明,多尺度量子精修方案可以有效地用于提高金属蛋白中局部金属结合位点的结构精度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验