Department of Chemistry and the Quantum Theory Project, University of Florida, 2238 New Physics Building, P.O. Box 118435, Gainesville, FL 32611-8435, USA.
J Biomol NMR. 2013 Jun;56(2):125-37. doi: 10.1007/s10858-013-9729-7. Epub 2013 Apr 23.
Correctly calculating the structure of metal coordination sites in a protein during the process of nuclear magnetic resonance (NMR) structure determination and refinement continues to be a challenging task. In this study, we present an accurate and convenient means by which to include metal ions in the NMR structure determination process using molecular dynamics (MD) simulations constrained by NMR-derived data to obtain a realistic and physically viable description of the metal binding site(s). This method provides the framework to accurately portray the metal ions and its binding residues in a pseudo-bond or dummy-cation like approach, and is validated by quantum mechanical/molecular mechanical (QM/MM) MD calculations constrained by NMR-derived data. To illustrate this approach, we refine the zinc coordination complex structure of the zinc sensing transcriptional repressor protein Staphylococcus aureus CzrA, generating over 130 ns of MD and QM/MM MD NMR-data compliant sampling. In addition to refining the first coordination shell structure of the Zn(II) ion, this protocol benefits from being performed in a periodically replicated solvation environment including long-range electrostatics. We determine that unrestrained (not based on NMR data) MD simulations correlated to the NMR data in a time-averaged ensemble. The accurate solution structure ensemble of the metal-bound protein accurately describes the role of conformational sampling in allosteric regulation of DNA binding by zinc and serves to validate our previous unrestrained MD simulations of CzrA. This methodology has potentially broad applicability in the structure determination of metal ion bound proteins, protein folding and metal template protein-design studies.
在核磁共振(NMR)结构测定和精修过程中正确计算蛋白质中金属配位位点的结构仍然是一项具有挑战性的任务。在这项研究中,我们提出了一种准确、方便的方法,通过使用受 NMR 数据约束的分子动力学(MD)模拟将金属离子纳入 NMR 结构测定过程中,以获得对金属结合位点的真实和可行的描述。该方法提供了一个框架,可以以类似伪键或虚拟阳离子的方式准确描绘金属离子及其结合残基,并通过受 NMR 数据约束的量子力学/分子力学(QM/MM)MD 计算进行验证。为了说明这种方法,我们对锌感应转录阻遏蛋白金黄色葡萄球菌 CzrA 的锌配位复合物结构进行了精修,生成了超过 130ns 的 MD 和 QM/MM MD NMR 数据符合采样。除了精修 Zn(II)离子的第一配位壳结构外,该方案还受益于在包括远程静电在内的周期性复制溶剂环境中进行。我们确定不受约束(不基于 NMR 数据)的 MD 模拟与 NMR 数据在时间平均系综中相关。金属结合蛋白的准确溶液结构集合准确描述了构象采样在锌对 DNA 结合的变构调节中的作用,并验证了我们之前对 CzrA 的无约束 MD 模拟。该方法在金属离子结合蛋白的结构测定、蛋白质折叠和金属模板蛋白设计研究中具有潜在的广泛适用性。