Khan Rashid, Rahman Altaf Ur, Zhang Qingmin, Kratzer Peter, Ramay Shahid M
School of Energy and Power Engineering, Xi'an Jiaotong University (XJTU), 28 Xianning W.Rd., Xi'an 710049, People's Republic of China.
Department of Physics, Riphah International University, Lahore, Pakistan.
J Phys Condens Matter. 2021 Jun 18;33(31). doi: 10.1088/1361-648X/ac04ce.
Using first-principles calculations, functionalization of the monolayer-GaS crystal structure through N or Cr-doping at all possible lattice sites has been investigated. Our results show that pristine monolayer-GaS is an indirect-bandgap, non-magnetic semiconductor. The bandgap can be tuned and a magnetic moment (MM) can be induced by the introduction of N or Cr atomic anion/cation doping in monolayer GaS. For instance, the intrinsic character of monolayer GaS can be changed by substitution of N for the S-site to p-type, while substitution of Cr at the S-site or Ga-site induces half-metallicity at sufficiently high concentrations. The defect states are located in the electronic bandgap region of the GaS monolayer. These findings help to extend the application of monolayer-GaS structures in nano-electronics and spintronics. Since the S-sites at the surface are more easily accessible to doping in experiment, we chose the S-site for further investigations. Finally, we perform calculations with ferromagnetic (FM) and antiferromagnetic (AFM) alignment of the MMs at the dopants. For pairs of impurities of the same species at low concentrations we find Cr atoms to prefer the FM state, while N atoms prefer the AFM state, both for impurities on opposite surfaces of the GaS monolayer and for impurities sharing a common Ga neighbor sitting at the same surface. Extending our study to higher concentrations of Cr atoms, we find that clusters of four Cr atoms prefer AFM coupling, whereas the FM coupling is retained for Cr atoms at larger distance arranged on a honeycomb lattice. For the latter arrangement, we estimate the FM Curie temperatureto be 241 K. We conclude that the Cr-doped monolayer-GaS crystal structure offers enhanced electronic and magnetic properties and is an appealing candidate for spintronic devices operating close to room temperature.
通过第一性原理计算,研究了在单层硫化镓(monolayer-GaS)晶体结构的所有可能晶格位置进行氮(N)或铬(Cr)掺杂的功能化情况。我们的结果表明,原始的单层硫化镓是一种间接带隙、非磁性半导体。通过在单层硫化镓中引入N或Cr原子阴离子/阳离子掺杂,可以调节带隙并诱导出磁矩(MM)。例如,用N取代S位可将单层硫化镓的本征特性改变为p型,而在S位或Ga位掺杂Cr在足够高的浓度下会诱导出半金属性。缺陷态位于硫化镓单层的电子带隙区域。这些发现有助于扩展单层硫化镓结构在纳米电子学和自旋电子学中的应用。由于在实验中表面的S位更容易进行掺杂,我们选择S位进行进一步研究。最后,我们对掺杂剂处磁矩的铁磁(FM)和反铁磁(AFM)排列进行了计算。对于低浓度下相同种类的杂质对,我们发现无论是在硫化镓单层相对表面上的杂质还是在同一表面共享一个共同Ga邻居的杂质,Cr原子都倾向于FM态,而N原子则倾向于AFM态。将我们的研究扩展到更高浓度的Cr原子,我们发现四个Cr原子的团簇更喜欢AFM耦合,而对于以蜂窝晶格排列在较大距离处的Cr原子则保留FM耦合。对于后一种排列,我们估计FM居里温度为241 K。我们得出结论,Cr掺杂的单层硫化镓晶体结构具有增强的电子和磁性特性,是接近室温运行的自旋电子器件的有吸引力的候选材料。