Suppr超能文献

通过替代掺杂和吸附对单层硫化镓进行功能化以增强电子和磁性性能。

Enhanced electronic and magnetic properties by functionalization of monolayer GaS via substitutional doping and adsorption.

作者信息

Ur Rahman Altaf, Rahman Gul, Kratzer Peter

机构信息

Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan. Faculty of Physics and Center for Nanointegration (CENIDE), University of Duisburg-Essen, Lotharstrasse 1, 47057 Duisburg, Germany.

出版信息

J Phys Condens Matter. 2018 May 16;30(19):195805. doi: 10.1088/1361-648X/aab8b8. Epub 2018 Mar 22.

Abstract

The structural, electronic, and magnetic properties of two-dimensional (2D) GaS are investigated using density functional theory (DFT). After confirming that the pristine 2D GaS is a non-magnetic, indirect band gap semiconductor, we consider N and F as substitutional dopants or adsorbed atoms. Except for N substituting for Ga (N), all considered cases are found to possess a magnetic moment. Fluorine, both in its atomic and molecular form, undergoes a highly exothermic reaction with GaS. Its site preference (F or F) as substitutional dopant depends on Ga-rich or S-rich conditions. Both for F and F adsorption at the Ga site, a strong F-Ga bond is formed, resulting in broken bonds within the GaS monolayer. As a result, F induces p-type conductivity in GaS, whereas F induces a dispersive, partly occupied impurity band about 0.5 e below the conduction band edge of GaS. Substitutional doping with N at both the S and the Ga site is exothermic when using N atoms, whereas only the more favourable site under the prevailing conditions can be accessed by the less reactive N molecules. While N induces a deep level occupied by one electron at 0.5 eV above the valence band, non-magnetic N impurities in sufficiently high concentrations modify the band structure such that a direct transition between N-induced states becomes possible. This effect can be exploited to render monolayer GaS a direct-band gap semiconductor for optoelectronic applications. Moreover, functionalization by N or F adsorption on GaS leads to in-gap states with characteristic transition energies that can be used to tune light absorption and emission. These results suggest that GaS is a good candidate for design and construction of 2D optoelectronic and spintronics devices.

摘要

利用密度泛函理论(DFT)研究了二维(2D)硫化镓(GaS)的结构、电子和磁性特性。在确认原始的二维GaS是一种非磁性的间接带隙半导体后,我们将氮(N)和氟(F)视为替代掺杂剂或吸附原子。除了N替代Ga(N)的情况外,所有考虑的情况都被发现具有磁矩。氟,无论是原子形式还是分子形式,都与GaS发生高度放热反应。其作为替代掺杂剂的位点偏好(F或F)取决于富镓或富硫条件。对于在Ga位点的F和F吸附,都会形成强的F-Ga键,导致GaS单层内的键断裂。结果,F在GaS中诱导p型导电性,而F在GaS导带边缘以下约0.5 eV处诱导一个色散的、部分占据的杂质带。当使用N原子时,在S和Ga位点用N进行替代掺杂是放热的,而反应性较低的N分子只能进入当前条件下更有利的位点。虽然N在价带上方0.5 eV处诱导一个被一个电子占据的深能级,但足够高浓度的非磁性N杂质会改变能带结构,使得在N诱导的状态之间可能发生直接跃迁。这种效应可用于使单层GaS成为用于光电子应用的直接带隙半导体。此外,通过在GaS上吸附N或F进行功能化会导致具有特征跃迁能量的带隙态,可用于调节光吸收和发射。这些结果表明,GaS是设计和构建二维光电子和自旋电子器件的良好候选材料。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验