Suppr超能文献

动态占据模型能否提高物种分布动态预测的准确性?瑞士鸟类的检验。

Can dynamic occupancy models improve predictions of species' range dynamics? A test using Swiss birds.

机构信息

School of BioSciences, University of Melbourne, Parkville, Vic., Australia.

Geography Dept., Humboldt-University Berlin, Berlin, Germany.

出版信息

Glob Chang Biol. 2021 Sep;27(18):4269-4282. doi: 10.1111/gcb.15723. Epub 2021 Jun 19.

Abstract

Predictions of species' current and future ranges are needed to effectively manage species under environmental change. Species ranges are typically estimated using correlative species distribution models (SDMs), which have been criticized for their static nature. In contrast, dynamic occupancy models (DOMs) explicitily describe temporal changes in species' occupancy via colonization and local extinction probabilities, estimated from time series of occurrence data. Yet, tests of whether these models improve predictive accuracy under current or future conditions are rare. Using a long-term data set on 69 Swiss birds, we tested whether DOMs improve the predictions of distribution changes over time compared to SDMs. We evaluated the accuracy of spatial predictions and their ability to detect population trends. We also explored how predictions differed when we accounted for imperfect detection and parameterized models using calibration data sets of different time series lengths. All model types had high spatial predictive performance when assessed across all sites (mean AUC > 0.8), with flexible machine learning SDM algorithms outperforming parametric static and DOMs. However, none of the models performed well at identifying sites where range changes are likely to occur. In terms of estimating population trends, DOMs performed best, particularly for species with strong population changes and when fit with sufficient data, while static SDMs performed very poorly. Overall, our study highlights the importance of considering what aspects of performance matter most when selecting a modelling method for a particular application and the need for further research to improve model utility. While DOMs show promise for capturing range dynamics and inferring population trends when fitted with sufficient data, computational constraints on variable selection and model fitting can lead to reduced spatial accuracy of predictions, an area warranting more attention.

摘要

预测物种当前和未来的分布范围对于有效管理环境变化下的物种至关重要。物种分布范围通常使用相关性物种分布模型(SDM)进行估计,这些模型因其静态性质而受到批评。相比之下,动态占有模型(DOM)通过从出现数据的时间序列中估计物种占有和局部灭绝的概率,明确描述了物种占有随时间的变化。然而,很少有测试这些模型是否能提高当前或未来条件下的预测准确性。利用瑞士鸟类的长期数据集,我们测试了 DOM 是否比 SDM 能更好地预测随时间的分布变化。我们评估了空间预测的准确性及其检测种群趋势的能力。我们还探讨了在考虑不完美检测和使用不同时间序列长度的校准数据集参数化模型时,预测结果的差异。所有模型类型在评估所有地点时都具有较高的空间预测性能(平均 AUC >0.8),灵活的机器学习 SDM 算法的表现优于参数静态和 DOM。然而,没有一种模型能够很好地识别可能发生范围变化的地点。在估计种群趋势方面,DOM 表现最佳,尤其是对于种群变化较大的物种,并且当拟合足够的数据时,而静态 SDM 表现非常差。总的来说,我们的研究强调了在为特定应用选择建模方法时考虑性能的哪些方面最重要的重要性,以及需要进一步研究以提高模型的实用性。虽然 DOM 在拟合足够数据时显示出捕捉范围动态和推断种群趋势的潜力,但变量选择和模型拟合的计算限制可能会导致预测的空间准确性降低,这是一个值得关注的领域。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验