Suppr超能文献

探索使用 RAxML-NG 进行系统发育推断的并行 MPI 容错机制。

Exploring parallel MPI fault tolerance mechanisms for phylogenetic inference with RAxML-NG.

机构信息

Institute of Theoretical Informatics, Karlsruhe Institute of Technology, Baden, Karlsruhe, Württemberg, Germany.

Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Baden, Heidelberg, Württemberg, Germany.

出版信息

Bioinformatics. 2021 Nov 18;37(22):4056-4063. doi: 10.1093/bioinformatics/btab399.

Abstract

MOTIVATION

Phylogenetic trees are now routinely inferred on large scale high performance computing systems with thousands of cores as the parallel scalability of phylogenetic inference tools has improved over the past years to cope with the molecular data avalanche. Thus, the parallel fault tolerance of phylogenetic inference tools has become a relevant challenge. To this end, we explore parallel fault tolerance mechanisms and algorithms, the software modifications required and the performance penalties induced via enabling parallel fault tolerance by example of RAxML-NG, the successor of the widely used RAxML tool for maximum likelihood-based phylogenetic tree inference.

RESULTS

We find that the slowdown induced by the necessary additional recovery mechanisms in RAxML-NG is on average 1.00 ± 0.04. The overall slowdown by using these recovery mechanisms in conjunction with a fault-tolerant Message Passing Interface implementation amounts to on average 1.7 ± 0.6 for large empirical datasets. Via failure simulations, we show that RAxML-NG can successfully recover from multiple simultaneous failures, subsequent failures, failures during recovery and failures during checkpointing. Recoveries are automatic and transparent to the user.

AVAILABILITY AND IMPLEMENTATION

The modified fault-tolerant RAxML-NG code is available under GNU GPL at https://github.com/lukashuebner/ft-raxml-ng.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

随着过去几年中系统对生物信息学算法的并行扩展,大规模的高性能计算系统(拥有数千个核心)已经能够用于常规的系统中。这些系统被用于推断系统的进化树,即推断不同生物的亲缘关系。这些算法的并行容错能力已经成为一个重要的挑战。为了解决这个问题,我们以 RAxML-NG 为例,探索了并行容错机制和算法、软件的修改以及并行容错带来的性能惩罚。RAxML-NG 是广泛使用的最大似然法进化树推断工具 RAxML 的继任者。

结果

我们发现,RAxML-NG 中必要的额外恢复机制所导致的平均减速为 1.00±0.04。在使用这些恢复机制与容错消息传递接口(MPI)实现相结合的情况下,对于大型经验数据集,总体减速平均为 1.7±0.6。通过故障模拟,我们表明 RAxML-NG 可以成功地从多个同时故障、后续故障、恢复过程中的故障和检查点过程中的故障中恢复。恢复是自动的,对用户是透明的。

可用性和实现

修改后的容错 RAxML-NG 代码可在 https://github.com/lukashuebner/ft-raxml-ng 下以 GNU GPL 获得。

补充信息

补充数据可在《生物信息学》在线获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2aca/9502163/be245616a02e/btab399f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验