Suppr超能文献

HelPredictor模型通过单细胞转录组预测人类胚胎谱系分配。

HelPredictor models single-cell transcriptome to predict human embryo lineage allocation.

作者信息

Liang Pengfei, Zheng Lei, Long Chunshen, Yang Wuritu, Yang Lei, Zuo Yongchun

机构信息

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of life Sciences, Inner Mongolia University, Hohhot 010070, China.

State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China.

出版信息

Brief Bioinform. 2021 Nov 5;22(6). doi: 10.1093/bib/bbab196.

Abstract

The in-depth understanding of cellular fate decision of human preimplantation embryos has prompted investigations on how changes in lineage allocation, which is far from trivial and remains a time-consuming task by experimental methods. It is desirable to develop a novel effective bioinformatics strategy to consider transitions of coordinated embryo lineage allocation and stage-specific patterns. There are rapidly growing applications of machine learning models to interpret complex datasets for identifying candidate development-related factors and lineage-determining molecular events. Here we developed the first machine learning platform, HelPredictor, that integrates three feature selection methods, namely, principal components analysis, F-score algorithm and squared coefficient of variation, and four classical machine learning classifiers that different combinations of methods and classifiers have independent outputs by increment feature selection method. With application to single-cell sequencing data of human embryo, HelPredictor not only achieved 94.9% and 90.9% respectively with cross-validation and independent test, but also fast classified different embryonic lineages and their development trajectories using less HelPredictor-predicted factors. The above-mentioned candidate lineage-specific genes were discussed in detail and were clustered for exploring transitions of embryonic heterogeneity. Our tool can fast and efficiently reveal potential lineage-specific and stage-specific biomarkers and provide insights into how advanced computational tools contribute to development research. The source code is available at https://github.com/liameihao/HelPredictor.

摘要

对人类植入前胚胎细胞命运决定的深入理解促使人们对谱系分配变化展开研究,而谱系分配变化绝非易事,通过实验方法进行研究仍很耗时。开发一种新颖有效的生物信息学策略来考量胚胎谱系协调分配的转变及阶段特异性模式是很有必要的。机器学习模型在解释复杂数据集以识别候选发育相关因子和谱系决定分子事件方面的应用正在迅速增加。在此,我们开发了首个机器学习平台HelPredictor,它整合了三种特征选择方法,即主成分分析、F分数算法和变异系数平方,以及四种经典机器学习分类器,通过递增特征选择方法,不同的方法和分类器组合具有独立输出。将其应用于人类胚胎单细胞测序数据时,HelPredictor不仅在交叉验证和独立测试中分别达到了94.9%和90.9%的准确率,还能使用较少的HelPredictor预测因子快速分类不同的胚胎谱系及其发育轨迹。对上述候选谱系特异性基因进行了详细讨论,并进行了聚类以探索胚胎异质性的转变。我们的工具能够快速有效地揭示潜在的谱系特异性和阶段特异性生物标志物,并为先进的计算工具如何助力发育研究提供见解。源代码可在https://github.com/liameihao/HelPredictor获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验