University of Nevada Reno, Department of Computer Science and Engineering, Reno, NV 89557, USA.
NASA Ames Research Center, Space Biosciences Division, Moffett Field, CA 94035, USA.
Nucleic Acids Res. 2021 Jul 2;49(W1):W114-W124. doi: 10.1093/nar/gkab421.
In molecular biology and genetics, there is a large gap between the ease of data collection and our ability to extract knowledge from these data. Contributing to this gap is the fact that living organisms are complex systems whose emerging phenotypes are the results of multiple complex interactions taking place on various pathways. This demands powerful yet user-friendly pathway analysis tools to translate the now abundant high-throughput data into a better understanding of the underlying biological phenomena. Here we introduce Consensus Pathway Analysis (CPA), a web-based platform that allows researchers to (i) perform pathway analysis using eight established methods (GSEA, GSA, FGSEA, PADOG, Impact Analysis, ORA/Webgestalt, KS-test, Wilcox-test), (ii) perform meta-analysis of multiple datasets, (iii) combine methods and datasets to accurately identify the impacted pathways underlying the studied condition and (iv) interactively explore impacted pathways, and browse relationships between pathways and genes. The platform supports three types of input: (i) a list of differentially expressed genes, (ii) genes and fold changes and (iii) an expression matrix. It also allows users to import data from NCBI GEO. The CPA platform currently supports the analysis of multiple organisms using KEGG and Gene Ontology, and it is freely available at http://cpa.tinnguyen-lab.com.
在分子生物学和遗传学中,数据的收集非常容易,但我们从这些数据中提取知识的能力却存在很大差距。造成这种差距的一个原因是,生物体是复杂的系统,其新兴表型是多个复杂相互作用在不同途径上发生的结果。这就需要强大而又易于使用的通路分析工具,将现在丰富的高通量数据转化为对潜在生物学现象的更好理解。在这里,我们介绍了共识通路分析(Consensus Pathway Analysis,CPA),这是一个基于网络的平台,允许研究人员(i)使用八种已建立的方法(GSEA、GSA、FGSEA、PADOG、Impact Analysis、ORA/Webgestalt、KS-test、Wilcox-test)进行通路分析,(ii)对多个数据集进行元分析,(iii)结合方法和数据集,准确识别所研究条件下受影响的通路,以及(iv)交互式探索受影响的通路,并浏览通路和基因之间的关系。该平台支持三种类型的输入:(i)差异表达基因列表,(ii)基因和倍数变化,以及(iii)表达矩阵。它还允许用户从 NCBI GEO 导入数据。CPA 平台目前支持使用 KEGG 和基因本体论对多种生物体进行分析,并且可以在 http://cpa.tinnguyen-lab.com 免费使用。