Tiradentes University, Av. Murilo Dantas 300, Farolândia, Aracaju, SE, 49032-490, Brazil.
Institute of Techonology and Research, Av. Murilo Dantas 300, Prédio do ITP, Farolândia, Aracaju, SE, 49032-490, Brazil.
Bioprocess Biosyst Eng. 2021 Oct;44(10):2141-2151. doi: 10.1007/s00449-021-02590-y. Epub 2021 May 26.
In the present study, we demonstrated the use of molecular docking as an efficient in silico screening tool for lipase-triglyceride interactions. Computational simulations using the crystal structures from Burkholderia cepacia lipase (BCL), Thermomyces lanuginosus lipase (TLL), and pancreatic porcine lipase (PPL) were performed to elucidate the catalytic behavior with the majority triglycerides present in Licuri oil, as follows: caprilyl-dilauryl-glycerol (CyLaLa), capryl-dilauryl-glycerol (CaLaLa), capryl-lauryl-myristoyl-glycerol (CaLaM), and dilauryl-myristoyl-glycerol (LaLaM). The computational simulation results showed that BCL has the potential to preferentially catalyze the major triglycerides present in Licuri oil, demonstrating that CyLaLa, (≈25.75% oil composition) interacts directly with two of the three amino acid residues in its catalytic triad (Ser87 and His286) with the lowest energy (-5.9 kcal/mol), while other triglycerides (CaLaLa, CaLaM, and LaLaM) interact with only one amino acid (His286). In one hard, TLL showed a preference for catalyzing the triglyceride CaLaLa also interacting with His286 residue, but, achieving higher binding energies (-5.3 kcal/mol) than found in BCL (-5.7 kcal/mol). On the other hand, PPL prefers to catalyze only with LaLaM triglyceride by His264 residue interaction. When comparing the computational simulations with the experimental results, it was possible to understand how BCL and TLL display more stable binding with the majority triglycerides present in the Licuri oil, achieving conversions of 50.86 and 49.01%, respectively. These results indicate the production of fatty acid concentrates from Licuri oil with high lauric acid content. Meanwhile, this study also demonstrates the application of molecular docking as an important tool for lipase screening to reach a more sustainable production of fatty acid concentrates from vegetable oils.
在本研究中,我们展示了分子对接作为一种有效的计算机筛选工具,用于脂肪酶-甘油三酯相互作用。使用 Burkholderia cepacia 脂肪酶(BCL)、Thermomyces lanuginosus 脂肪酶(TLL)和猪胰腺脂肪酶(PPL)的晶体结构进行计算模拟,以阐明与 Licuri 油中存在的大多数甘油三酯的催化行为,如下所示:癸酰基-二月桂酰基-甘油(CyLaLa)、癸酰基-二月桂酰基-甘油(CaLaLa)、癸酰基-月桂酰基-肉豆蔻酰基-甘油(CaLaM)和二月桂酰基-肉豆蔻酰基-甘油(LaLaM)。计算模拟结果表明,BCL 有可能优先催化 Licuri 油中存在的主要甘油三酯,表明 CyLaLa(≈25.75%油组成)与催化三联体中的两个氨基酸残基(Ser87 和 His286)直接相互作用,能量最低(-5.9 kcal/mol),而其他甘油三酯(CaLaLa、CaLaM 和 LaLaM)仅与一个氨基酸(His286)相互作用。另一方面,PPL 仅通过 His264 残基与 LaLaM 甘油三酯相互作用,更喜欢催化反应。在比较计算模拟和实验结果时,可以理解 BCL 和 TLL 如何与 Licuri 油中存在的大多数甘油三酯显示出更稳定的结合,分别实现 50.86%和 49.01%的转化率。这些结果表明可以从 Licuri 油中生产高月桂酸含量的脂肪酸浓缩物。同时,本研究还证明了分子对接作为脂肪酶筛选的重要工具的应用,以实现从植物油生产更可持续的脂肪酸浓缩物。