Rosławska Anna, Merino Pablo, Leon Christopher C, Grewal Abhishek, Etzkorn Markus, Kuhnke Klaus, Kern Klaus
Max-Planck-Institut für Festkörperforschung, D-70569 Stuttgart, Germany.
Université de Strasbourg, CNRS, IPCMS, UMR 7504, F-67000 Strasbourg, France.
Nano Lett. 2021 Jun 9;21(11):4577-4583. doi: 10.1021/acs.nanolett.1c00328. Epub 2021 May 26.
Light sources on the scale of single molecules can be addressed and characterized at their proper sub-nanometer scale by scanning tunneling microscopy-induced luminescence (STML). Such a source can be driven by defined short charge pulses while the luminescence is detected with sub-nanosecond resolution. We introduce an approach to concurrently image the molecular emitter, which is based on an individual defect, with its local environment along with its luminescence dynamics at a resolution of a billion frames per second. The observed dynamics can be assigned to the single electron capture occurring in the low-nanosecond regime. While the emitter's location on the surface remains fixed, the scanning of the tip modifies the energy landscape for charge injection into the defect. The principle of measurement is extendable to fundamental processes beyond charge transfer, like exciton diffusion.
通过扫描隧道显微镜诱导发光(STML),可以在单分子尺度上对光源进行寻址,并在其适当的亚纳米尺度上对其进行表征。这样的光源可以由定义的短电荷脉冲驱动,同时以亚纳秒分辨率检测发光。我们引入了一种方法,以每秒十亿帧的分辨率同时成像基于单个缺陷的分子发射体及其局部环境以及其发光动力学。观察到的动力学可以归因于低纳秒范围内发生的单电子捕获。虽然发射体在表面上的位置保持固定,但尖端的扫描会改变电荷注入缺陷的能量分布。测量原理可扩展到电荷转移之外的基本过程,如激子扩散。