Rosławska Anna, Leon Christopher C, Grewal Abhishek, Merino Pablo, Kuhnke Klaus, Kern Klaus
Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, 70569 Stuttgart, Germany.
Instituto de Ciencia de Materiales de Madrid, CSIC, c/Sor Juana Inés de la Cruz 3, E28049 Madrid, Spain.
ACS Nano. 2020 Jun 23;14(6):6366-6375. doi: 10.1021/acsnano.0c03704. Epub 2020 Jun 1.
Light absorption and emission have their origins in fast atomic-scale phenomena. To characterize these basic steps (.., in photosynthesis, luminescence, and quantum optics), it is necessary to access picosecond temporal and picometer spatial scales simultaneously. In this Perspective, we describe how state-of-the-art picosecond photon correlation spectroscopy combined with luminescence induced at the atomic scale with a scanning tunneling microscope (STM) enables such studies. We outline recent STM-induced luminescence work on single-photon emitters and the dynamics of excitons, charges, molecules, and atoms as well as several prospective experiments concerning light-matter interactions at the nanoscale. We also describe future strategies for measuring and rationalizing ultrafast phenomena at the nanoscale.
光的吸收和发射源于快速的原子尺度现象。为了表征这些基本过程(例如在光合作用、发光和量子光学中),必须同时达到皮秒级的时间尺度和皮米级的空间尺度。在这篇观点文章中,我们描述了如何将最先进的皮秒光子相关光谱与扫描隧道显微镜(STM)在原子尺度上诱导的发光相结合,从而实现此类研究。我们概述了近期关于单光子发射器以及激子、电荷、分子和原子动力学的STM诱导发光工作,以及一些关于纳米尺度光与物质相互作用的前瞻性实验。我们还描述了用于测量和阐释纳米尺度超快现象的未来策略。