Zijlstra Douwe Sjirk, de Korte Joren, de Vries Ernst P C, Hameleers Lisanne, Wilbers Erwin, Jurak Edita, Deuss Peter Joseph
Department of Chemical Engineering (ENTEG), University of Groningen, Groningen, Netherlands.
Department of Bioproduct Engineering (ENTEG), University of Groningen, Groningen, Netherlands.
Front Chem. 2021 May 10;9:655983. doi: 10.3389/fchem.2021.655983. eCollection 2021.
Innovative biomass fractionation is of major importance for economically competitive biorefineries. Lignin is currently severely underutilized due to the use of high severity fractionation methodologies that yield complex condensed lignin that limits high-value applicability. Mild lignin fractionation conditions can lead to lignin with a more regular C-O bonded structure that has increased potential for higher value applications. Nevertheless, such extraction methodologies typically suffer from inadequate lignin extraction efficiencies and yield. (Semi)-continuous flow extractions are a promising method to achieve improved extraction efficiency of such C-O linked lignin. Here we show that optimized organosolv extraction in a flow-through setup resulted in 93-96% delignification of 40 g walnut shells (40 wt% lignin content) by applying mild organosolv extraction conditions with a 2 g/min flowrate of a 9:1 n-butanol/water mixture with 0.18 M HSO at 120°C in 2.5 h. 85 wt% of the lignin (corrected for alcohol incorporation, moisture content and carbohydrate impurities) was isolated as a powder with a high retention of the β-aryl ether (β-O-4) content of 63 linking motifs per 100 C9 units. Close examination of the isolated lignin showed that the main carbohydrate contamination in the recovered lignin was butyl-xyloside and other butoxylate carbohydrates. The work-up and purification procedure were investigated and improved by the implementation of a caustic soda treatment step and phase separation with a continuous integrated mixer/separator (CINC). This led to a combined 75 wt% yield of the lignin in 3 separate fractions with 3% carbohydrate impurities and a very high β-O-4 content of 67 linking motifs per 100 C9 units. Analysis of all the mass flows showed that 98% of the carbohydrate content was removed with the inline purification step, which is a significant improvement to the 88% carbohydrate removal for the traditional lignin precipitation work-up procedure. Overall we show a convenient method for inline extraction and purification to obtain high β-O-4 butanosolv lignin in excellent yields.
创新的生物质分级对于具有经济竞争力的生物精炼厂至关重要。由于采用了高苛刻度分级方法,导致生成复杂的缩合木质素,限制了其高价值应用,目前木质素的利用率严重不足。温和的木质素分级条件可产生具有更规则C-O键结构的木质素,具有更高价值应用的潜力更大。然而,此类提取方法通常存在木质素提取效率和产率不足的问题。(半)连续流提取是提高此类C-O键连接木质素提取效率的一种有前景的方法。在此,我们表明,在流通装置中进行优化的有机溶剂提取,通过在120°C下以2 g/min的流速使用9:1的正丁醇/水混合物与0.18 M硫酸,在2.5小时内对40克核桃壳(木质素含量40 wt%)进行温和的有机溶剂提取条件,实现了93 - 96%的脱木质素率。85 wt%的木质素(校正了醇掺入、水分含量和碳水化合物杂质)被分离为粉末,每100个C9单元中β-芳基醚(β-O-4)含量的保留率很高,为63个连接基序。对分离出的木质素进行仔细检查表明,回收木质素中的主要碳水化合物污染物是丁基木糖苷和其他丁氧基化碳水化合物。通过实施苛性钠处理步骤以及使用连续集成混合器/分离器(CINC)进行相分离,对后处理和纯化过程进行了研究和改进。这导致在3个单独的馏分中木质素的总产率为75 wt%,碳水化合物杂质为3%,每100个C9单元中β-O-4含量非常高,为67个连接基序。对所有质量流的分析表明,在线纯化步骤去除了98%的碳水化合物含量,这比传统木质素沉淀后处理程序中88%的碳水化合物去除率有了显著提高。总体而言,我们展示了一种方便的在线提取和纯化方法,以优异的产率获得高β-O-4丁醇木质素。