Pérez-Pérez Dalila Blanca, Salomón-Torres Ricardo, García-Vázquez Juan Pablo
Facultad de Ingeniería, Universidad Autónoma de Baja California (UABC), Mexicali, B.C., México.
Unidad Académica San Luis Río Colorado, Universidad Estatal de Sonora (UES), San Luis Rio Colorado, Sonora, México.
Data Brief. 2021 May 8;36:107116. doi: 10.1016/j.dib.2021.107116. eCollection 2021 Jun.
Nowadays, harvesting, sorting, and packaging fruit and vegetables are still done manually, despite the hard work this represents. The features that experts commonly use to sorting the date palm fruit are size, color, shape, and texture. Recently, it has started to design and develop artificial vision systems that consider the criteria of size, color, shape, and texture to automate these processes. However, the development of these systems is complex due to the lack of labeled datasets that facilitate the creation of models to locate, recognize and classify palm date fruit. This dataset is entitled Medjool, an image dataset of different sizes and maturity levels of Medjool dates. Researchers may use this data to develop a model for automatic location, recognition, classification, and visual counting of the Medjool dates on trays taking into account their visual features such as shape, color, size, and texture. This dataset was collected from the first-round harvest at Palmeras RQ Ranch in Mexicali, Mexico. Images acquisition was performed in natural light. The dataset comprises 2,576 annotated images in two formats, YOLO and PascalVOC format.
如今,水果和蔬菜的采摘、分拣及包装仍需人工完成,尽管这工作十分辛苦。专家们通常用于分拣椰枣的特征包括大小、颜色、形状和质地。最近,人们开始设计并开发人工视觉系统,该系统考虑大小、颜色、形状和质地等标准来实现这些流程的自动化。然而,由于缺乏有助于创建定位、识别和分类椰枣果实模型的标注数据集,这些系统的开发很复杂。这个数据集名为Medjool,是一个包含不同大小和成熟度的Medjool椰枣的图像数据集。研究人员可以使用这些数据来开发一个模型,用于根据托盘上Medjool椰枣的形状、颜色、大小和质地等视觉特征,对其进行自动定位、识别、分类和视觉计数。该数据集是从墨西哥墨西卡利帕尔梅拉斯RQ牧场的第一轮收获中收集的。图像采集是在自然光下进行的。该数据集包含两种格式(YOLO和PascalVOC格式)的2576张带注释的图像。