Suppr超能文献

本体感觉输入模式提升蝗虫飞行系统的活跃度。

Proprioceptive input patterns elevator activity in the locust flight system.

作者信息

Wolf H, Pearson K G

机构信息

Department of Physiology, University of Alberta, Edmonton, Canada.

出版信息

J Neurophysiol. 1988 Jun;59(6):1831-53. doi: 10.1152/jn.1988.59.6.1831.

Abstract
  1. In the locust, Locusta migratoria, the roles of two groups of wing sense organs, hind wing tegulae and wing-hinge stretch receptors, in the generation of the flight motor pattern were investigated. A preparation was employed that allowed the intracellular recording of neural activity in almost intact tethered flying locusts or after selective manipulations of sensory input. The functions of the two sets of receptors were assessed 1) by studying the phases of their discharges in the wingbeat cycle (Fig. 3), 2) by the selective ablation of input from the receptors (Figs. 4-7), and 3) by the selective stimulation of the receptor afferents (Figs. 8-12). 2. Input from the tegulae was found to be responsible for the initiation of elevator activity (Figs. 9 and 10) and for the generation of a distinct initial rapid depolarization (Figs. 4, 5, and 8) characteristic of elevator motor neuron activity in intact locusts (Figs. 1 and 16). 3. Input from the wing-hinge stretch receptors was found to control the duration of elevator depolarizations by the graded suppression of a second late component of the elevator depolarizations as wingbeat frequency increased (Figs. 6, 7, 11, and 12). The characteristics of this late component of elevator activity suggested that it is generated by the same (central nervous) mechanism that produces the elevator depolarizations recorded in deafferented animals (Fig. 2). Apparently this late component contributes to the intact pattern of elevator depolarizations only at lower wingbeat frequencies and is abolished by the action of stretch-receptor input at frequencies above approximately 15 Hz (Figs. 1, 2, and 4). At these high wingbeat frequencies elevator activity is dominated by the rapid depolarizations generated as a result of tegula input. 4. The present study demonstrates 1) that the timing of elevator motor neuron activity is determined by phasic afferent input from tegulae and stretch receptors and 2) that input from the stretch receptors controls the duration of elevator activity in the wingbeat cycle following the wing movement that was responsible for the generation of the receptor discharge.
摘要
  1. 在飞蝗(Locusta migratoria)中,研究了两组翅感觉器官,即后翅翅轭和翅铰链拉伸感受器在飞行运动模式产生中的作用。采用了一种制备方法,该方法允许在几乎完整的束缚飞行蝗虫中或在对感觉输入进行选择性操作后对神经活动进行细胞内记录。通过以下方式评估这两组感受器的功能:1)研究它们在翅拍周期中的放电相位(图3);2)选择性切除来自感受器的输入(图4 - 7);3)选择性刺激感受器传入神经(图8 - 12)。2. 发现来自翅轭的输入负责启动提升肌活动(图9和10)以及产生完整蝗虫中提升肌运动神经元活动特有的明显初始快速去极化(图4、5和8)(图1和16)。3. 发现来自翅铰链拉伸感受器的输入通过随着翅拍频率增加对提升肌去极化的第二个晚期成分进行分级抑制来控制提升肌去极化的持续时间(图6、7、11和12)。提升肌活动的这个晚期成分的特征表明,它是由与在去传入动物中记录到的提升肌去极化相同的(中枢神经)机制产生的(图2)。显然,这个晚期成分仅在较低翅拍频率下对提升肌去极化的完整模式有贡献,并且在频率高于约15 Hz时被拉伸感受器输入的作用消除(图1、2和4)。在这些高翅拍频率下,提升肌活动由翅轭输入产生的快速去极化主导。4. 本研究表明:1)提升肌运动神经元活动的时间由来自翅轭和拉伸感受器的相位性传入输入决定;2)来自拉伸感受器的输入控制在导致感受器放电的翅运动之后的翅拍周期中提升肌活动的持续时间。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验