School of Science and Technology, Hellenic Open University, Patras, Greece.
Sismanogleio General Hospital, IT department, Marousi, Greece.
Stud Health Technol Inform. 2021 May 27;281:43-47. doi: 10.3233/SHTI210117.
Hospital-acquired infections, particularly in ICU, are becoming more frequent in recent years, with the most serious of them being Gram-negative bacterial infections. Among them, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa are considered the most resistant bacteria encountered in ICU and other wards. Given the fact that about 24 hours are usually required to perform common antibiotic resistance tests after the bacteria identification, the use of machine learning techniques could be an additional decision support tool in selecting empirical antibiotic treatment based on the sample type, bacteria, and patient's basic characteristics. In this article, five machine learning (ML) models were evaluated to predict antimicrobial resistance of Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. We suggest implementing ML techniques to forecast antibiotic resistance using data from the clinical microbiology laboratory, available in the Laboratory Information System (LIS).
近年来,医院获得性感染,尤其是重症监护病房(ICU)的感染越来越频繁,其中最严重的是革兰氏阴性菌感染。在这些感染中,鲍曼不动杆菌、肺炎克雷伯菌和铜绿假单胞菌被认为是 ICU 和其他病房中最具耐药性的细菌。由于在细菌鉴定后通常需要大约 24 小时才能进行常见的抗生素耐药性测试,因此机器学习技术可以作为一种额外的决策支持工具,根据样本类型、细菌和患者的基本特征,选择经验性抗生素治疗。在本文中,我们评估了五种机器学习(ML)模型,以预测鲍曼不动杆菌、肺炎克雷伯菌和铜绿假单胞菌的抗菌药物耐药性。我们建议使用临床微生物学实验室的数据来实施 ML 技术,这些数据可从实验室信息系统(LIS)中获得。