Suppr超能文献

利用机器学习预测抗菌药物耐药性——文献综述

Using Machine Learning to Predict Antimicrobial Resistance-A Literature Review.

作者信息

Sakagianni Aikaterini, Koufopoulou Christina, Feretzakis Georgios, Kalles Dimitris, Verykios Vassilios S, Myrianthefs Pavlos, Fildisis Georgios

机构信息

Intensive Care Unit, Sismanogleio General Hospital, 15126 Marousi, Greece.

1st Anesthesiology Department, Aretaieio Hospital, National and Kapodistrian University of Athens Medical School, 11528 Athens, Greece.

出版信息

Antibiotics (Basel). 2023 Feb 24;12(3):452. doi: 10.3390/antibiotics12030452.

Abstract

Machine learning (ML) algorithms are increasingly applied in medical research and in healthcare, gradually improving clinical practice. Among various applications of these novel methods, their usage in the combat against antimicrobial resistance (AMR) is one of the most crucial areas of interest, as increasing resistance to antibiotics and management of difficult-to-treat multidrug-resistant infections are significant challenges for most countries worldwide, with life-threatening consequences. As antibiotic efficacy and treatment options decrease, the need for implementation of multimodal antibiotic stewardship programs is of utmost importance in order to restrict antibiotic misuse and prevent further aggravation of the AMR problem. Both supervised and unsupervised machine learning tools have been successfully used to predict early antibiotic resistance, and thus support clinicians in selecting appropriate therapy. In this paper, we reviewed the existing literature on machine learning and artificial intelligence (AI) in general in conjunction with antimicrobial resistance prediction. This is a narrative review, where we discuss the applications of ML methods in the field of AMR and their value as a complementary tool in the antibiotic stewardship practice, mainly from the clinician's point of view.

摘要

机器学习(ML)算法在医学研究和医疗保健中的应用日益广泛,逐渐改善着临床实践。在这些新方法的各种应用中,它们在对抗抗菌药物耐药性(AMR)方面的应用是最关键的关注领域之一,因为抗生素耐药性增加以及难以治疗的多重耐药感染的管理对全球大多数国家来说都是重大挑战,会带来危及生命的后果。随着抗生素疗效和治疗选择的减少,实施多模式抗生素管理计划以限制抗生素滥用并防止AMR问题进一步恶化至关重要。监督式和非监督式机器学习工具都已成功用于预测早期抗生素耐药性,从而支持临床医生选择合适的治疗方法。在本文中,我们结合抗菌药物耐药性预测对机器学习和人工智能(AI)的现有文献进行了综述。这是一篇叙述性综述,我们主要从临床医生的角度讨论ML方法在AMR领域的应用及其作为抗生素管理实践中补充工具的价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/345b/10044642/d920e5ddaefd/antibiotics-12-00452-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验