cMACS, Department of Microbial and Molecular Systems (M2S), KU Leuven, 3001 Leuven, Belgium.
Aix-Marseille Univ., CNRS, MADIREL UMR 7246, 13397 Marseille, France.
J Am Chem Soc. 2021 Jun 9;143(22):8249-8254. doi: 10.1021/jacs.1c03716. Epub 2021 May 27.
Physisorption using gas or vapor probe molecules is the most common characterization technique for porous materials. The method provides textural information on the adsorbent as well as the affinity for a specific adsorbate, typically through equilibrium pressure measurements. Here, we demonstrate how low-field NMR can be used to measure full adsorption isotherms, and how by selectively measuring H spins of the adsorbed probe molecules, rather than those in the vapor phase, this "NMR-relaxorption" technique provides insights about local dynamics beyond what can be learned from physisorption alone. The potential of this double-barreled approach was illustrated for a set of microporous metal-organic frameworks (MOFs). For methanol adsorption in ZIF-8, the method identifies multiple guest molecules populations assigned to MeOH clusters in the pore center, MeOH bound at cage windows and to MeOH adsorption on defect sites. For UiO-66(Zr), the sequential pore filling is demonstrated and accurate pore topologies are directly obtained, and for MIL-53(Al), structural phase transitions are accurately detected and linked with two populations of dimeric chemical species localized to specific positions in the framework.
使用气体或蒸气探针分子的物理吸附是最常见的多孔材料特性化技术。该方法提供了关于吸附剂的结构信息以及对特定吸附物的亲和力,通常通过平衡压力测量来实现。在这里,我们展示了如何使用低场 NMR 来测量完整的吸附等温线,以及如何通过选择性地测量吸附探针分子的 H 自旋,而不是气相中的 H 自旋,这种“NMR- relaxorption”技术可以提供比单纯物理吸附更深入的局部动力学信息。我们通过一组微孔金属有机骨架(MOFs)说明了这种双管齐下方法的潜力。对于 ZIF-8 中的甲醇吸附,该方法可以识别多个分配给孔中心甲醇团簇、笼窗处结合的甲醇以及缺陷位吸附甲醇的客体分子群体。对于 UiO-66(Zr),我们演示了顺序孔填充,并直接获得了准确的孔拓扑结构,对于 MIL-53(Al),我们准确地检测到了结构相变,并将其与两个定位在框架特定位置的二聚体化学物种群体联系起来。