Suppr超能文献

机器学习在药物基因组学和个性化医学中的应用:药物敏感性预测的排序模型。

Machine Learning for Pharmacogenomics and Personalized Medicine: A Ranking Model for Drug Sensitivity Prediction.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2324-2333. doi: 10.1109/TCBB.2021.3084562. Epub 2022 Aug 8.

Abstract

It is infeasible to test many different chemotherapy drugs on actual patients in large clinical trials, which motivates computational methods with the ability to learn and exploit associations between drug effectiveness and patient characteristics. This work proposes a machine learning approach to infer robust predictors of drug responses from patient genomic information. Rather than predicting the exact drug response on a given cell line, we introduce an elastic-net regression methodology to compare a drug-cell line pair against an alternative pair. Using predicted pairwise comparisons we rank the effectiveness of different drugs on the same cell line. A total of 173 cell lines and 100 drug responses were used in various settings for training and testing the proposed models. By comparing our approach against twelve baseline methods, we demonstrate that it outperforms the state-of-the-art methods in the literature. In contrast to most other methods, the algorithm is able to maintain its high performance even when we use a large number of drugs and few cell lines.

摘要

在大型临床试验中对许多不同的化疗药物进行测试是不可行的,这促使人们开发出具有学习和利用药物疗效与患者特征之间关联能力的计算方法。这项工作提出了一种机器学习方法,从患者的基因组信息中推断出药物反应的稳健预测因子。我们不是预测给定细胞系上的药物确切反应,而是引入弹性网络回归方法来比较药物-细胞系对与替代对。使用预测的成对比较,我们对同一细胞系上不同药物的有效性进行排名。在各种训练和测试模型的设置中,共使用了 173 个细胞系和 100 个药物反应。通过将我们的方法与十二种基线方法进行比较,我们证明它优于文献中的最新方法。与大多数其他方法不同,即使我们使用大量药物和少量细胞系,该算法也能够保持其高性能。

相似文献

1
Machine Learning for Pharmacogenomics and Personalized Medicine: A Ranking Model for Drug Sensitivity Prediction.
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2324-2333. doi: 10.1109/TCBB.2021.3084562. Epub 2022 Aug 8.
3
Comparison and validation of genomic predictors for anticancer drug sensitivity.
J Am Med Inform Assoc. 2013 Jul-Aug;20(4):597-602. doi: 10.1136/amiajnl-2012-001442. Epub 2013 Jan 26.
4
6
Kernelized rank learning for personalized drug recommendation.
Bioinformatics. 2018 Aug 15;34(16):2808-2816. doi: 10.1093/bioinformatics/bty132.
7
Drug Selection via Joint Push and Learning to Rank.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):110-123. doi: 10.1109/TCBB.2018.2848908. Epub 2018 Jun 25.
8
Ensembled machine learning framework for drug sensitivity prediction.
IET Syst Biol. 2020 Feb;14(1):39-46. doi: 10.1049/iet-syb.2018.5094.
9
Deep learning of pharmacogenomics resources: moving towards precision oncology.
Brief Bioinform. 2020 Dec 1;21(6):2066-2083. doi: 10.1093/bib/bbz144.

引用本文的文献

1
SAFE-MIL: a statistically interpretable framework for screening potential targeted therapy patients based on risk estimation.
Front Genet. 2024 Aug 15;15:1381851. doi: 10.3389/fgene.2024.1381851. eCollection 2024.
3
ITNR: Inversion Transformer-based Neural Ranking for cancer drug recommendations.
Comput Biol Med. 2024 Apr;172:108312. doi: 10.1016/j.compbiomed.2024.108312. Epub 2024 Mar 16.
4
Distributionally robust learning-to-rank under the Wasserstein metric.
PLoS One. 2023 Mar 30;18(3):e0283574. doi: 10.1371/journal.pone.0283574. eCollection 2023.
5
Social determinants of health and the prediction of missed breast imaging appointments.
BMC Health Serv Res. 2022 Nov 30;22(1):1454. doi: 10.1186/s12913-022-08784-8.

本文引用的文献

2
Graph Convolutional Networks for Drug Response Prediction.
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):146-154. doi: 10.1109/TCBB.2021.3060430. Epub 2022 Feb 3.
3
A Deep Learning Framework for Predicting Response to Therapy in Cancer.
Cell Rep. 2019 Dec 10;29(11):3367-3373.e4. doi: 10.1016/j.celrep.2019.11.017.
4
Drug Selection via Joint Push and Learning to Rank.
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):110-123. doi: 10.1109/TCBB.2018.2848908. Epub 2018 Jun 25.
5
CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.
Proteins. 2017 Sep;85(9):1724-1740. doi: 10.1002/prot.25330. Epub 2017 Jul 3.
6
A Copula Based Approach for Design of Multivariate Random Forests for Drug Sensitivity Prediction.
PLoS One. 2015 Dec 10;10(12):e0144490. doi: 10.1371/journal.pone.0144490. eCollection 2015.
8
Random forests to predict rectal toxicity following prostate cancer radiation therapy.
Int J Radiat Oncol Biol Phys. 2014 Aug 1;89(5):1024-1031. doi: 10.1016/j.ijrobp.2014.04.027. Epub 2014 Jul 8.
9
A community effort to assess and improve drug sensitivity prediction algorithms.
Nat Biotechnol. 2014 Dec;32(12):1202-12. doi: 10.1038/nbt.2877. Epub 2014 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验