Suppr超能文献

机器学习在药物基因组学和个性化医学中的应用:药物敏感性预测的排序模型。

Machine Learning for Pharmacogenomics and Personalized Medicine: A Ranking Model for Drug Sensitivity Prediction.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2324-2333. doi: 10.1109/TCBB.2021.3084562. Epub 2022 Aug 8.

Abstract

It is infeasible to test many different chemotherapy drugs on actual patients in large clinical trials, which motivates computational methods with the ability to learn and exploit associations between drug effectiveness and patient characteristics. This work proposes a machine learning approach to infer robust predictors of drug responses from patient genomic information. Rather than predicting the exact drug response on a given cell line, we introduce an elastic-net regression methodology to compare a drug-cell line pair against an alternative pair. Using predicted pairwise comparisons we rank the effectiveness of different drugs on the same cell line. A total of 173 cell lines and 100 drug responses were used in various settings for training and testing the proposed models. By comparing our approach against twelve baseline methods, we demonstrate that it outperforms the state-of-the-art methods in the literature. In contrast to most other methods, the algorithm is able to maintain its high performance even when we use a large number of drugs and few cell lines.

摘要

在大型临床试验中对许多不同的化疗药物进行测试是不可行的,这促使人们开发出具有学习和利用药物疗效与患者特征之间关联能力的计算方法。这项工作提出了一种机器学习方法,从患者的基因组信息中推断出药物反应的稳健预测因子。我们不是预测给定细胞系上的药物确切反应,而是引入弹性网络回归方法来比较药物-细胞系对与替代对。使用预测的成对比较,我们对同一细胞系上不同药物的有效性进行排名。在各种训练和测试模型的设置中,共使用了 173 个细胞系和 100 个药物反应。通过将我们的方法与十二种基线方法进行比较,我们证明它优于文献中的最新方法。与大多数其他方法不同,即使我们使用大量药物和少量细胞系,该算法也能够保持其高性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e838/9642333/248c2a373b0e/nihms-1828892-f0001.jpg

相似文献

3
Comparison and validation of genomic predictors for anticancer drug sensitivity.比较和验证预测抗癌药物敏感性的基因组标志物。
J Am Med Inform Assoc. 2013 Jul-Aug;20(4):597-602. doi: 10.1136/amiajnl-2012-001442. Epub 2013 Jan 26.
6
Kernelized rank learning for personalized drug recommendation.核化秩学习在个性化药物推荐中的应用。
Bioinformatics. 2018 Aug 15;34(16):2808-2816. doi: 10.1093/bioinformatics/bty132.
7
Drug Selection via Joint Push and Learning to Rank.通过联合推送和学习排序进行药物选择。
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):110-123. doi: 10.1109/TCBB.2018.2848908. Epub 2018 Jun 25.

本文引用的文献

2
Graph Convolutional Networks for Drug Response Prediction.图卷积网络在药物反应预测中的应用。
IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):146-154. doi: 10.1109/TCBB.2021.3060430. Epub 2022 Feb 3.
3
A Deep Learning Framework for Predicting Response to Therapy in Cancer.深度学习框架预测癌症治疗反应
Cell Rep. 2019 Dec 10;29(11):3367-3373.e4. doi: 10.1016/j.celrep.2019.11.017.
4
Drug Selection via Joint Push and Learning to Rank.通过联合推送和学习排序进行药物选择。
IEEE/ACM Trans Comput Biol Bioinform. 2020 Jan-Feb;17(1):110-123. doi: 10.1109/TCBB.2018.2848908. Epub 2018 Jun 25.
8
Random forests to predict rectal toxicity following prostate cancer radiation therapy.随机森林预测前列腺癌放射治疗后直肠毒性
Int J Radiat Oncol Biol Phys. 2014 Aug 1;89(5):1024-1031. doi: 10.1016/j.ijrobp.2014.04.027. Epub 2014 Jul 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验