IEEE/ACM Trans Comput Biol Bioinform. 2022 Jul-Aug;19(4):2324-2333. doi: 10.1109/TCBB.2021.3084562. Epub 2022 Aug 8.
It is infeasible to test many different chemotherapy drugs on actual patients in large clinical trials, which motivates computational methods with the ability to learn and exploit associations between drug effectiveness and patient characteristics. This work proposes a machine learning approach to infer robust predictors of drug responses from patient genomic information. Rather than predicting the exact drug response on a given cell line, we introduce an elastic-net regression methodology to compare a drug-cell line pair against an alternative pair. Using predicted pairwise comparisons we rank the effectiveness of different drugs on the same cell line. A total of 173 cell lines and 100 drug responses were used in various settings for training and testing the proposed models. By comparing our approach against twelve baseline methods, we demonstrate that it outperforms the state-of-the-art methods in the literature. In contrast to most other methods, the algorithm is able to maintain its high performance even when we use a large number of drugs and few cell lines.
在大型临床试验中对许多不同的化疗药物进行测试是不可行的,这促使人们开发出具有学习和利用药物疗效与患者特征之间关联能力的计算方法。这项工作提出了一种机器学习方法,从患者的基因组信息中推断出药物反应的稳健预测因子。我们不是预测给定细胞系上的药物确切反应,而是引入弹性网络回归方法来比较药物-细胞系对与替代对。使用预测的成对比较,我们对同一细胞系上不同药物的有效性进行排名。在各种训练和测试模型的设置中,共使用了 173 个细胞系和 100 个药物反应。通过将我们的方法与十二种基线方法进行比较,我们证明它优于文献中的最新方法。与大多数其他方法不同,即使我们使用大量药物和少量细胞系,该算法也能够保持其高性能。