Suppr超能文献

DROEG:一种基于组学和必需基因整合的癌症药物反应预测方法。

DROEG: a method for cancer drug response prediction based on omics and essential genes integration.

机构信息

Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education), Shanghai Jiao Tong University, Shanghai, China.

Collaborative Innovation Centre for Brain Science, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad003.

Abstract

Predicting therapeutic responses in cancer patients is a major challenge in the field of precision medicine due to high inter- and intra-tumor heterogeneity. Most drug response models need to be improved in terms of accuracy, and there is limited research to assess therapeutic responses of particular tumor types. Here, we developed a novel method DROEG (Drug Response based on Omics and Essential Genes) for prediction of drug response in tumor cell lines by integrating genomic, transcriptomic and methylomic data along with CRISPR essential genes, and revealed that the incorporation of tumor proliferation essential genes can improve drug sensitivity prediction. Concisely, DROEG integrates literature-based and statistics-based methods to select features and uses Support Vector Regression for model construction. We demonstrate that DROEG outperforms most state-of-the-art algorithms by both qualitative (prediction accuracy for drug-sensitive/resistant) and quantitative (Pearson correlation coefficient between the predicted and actual IC50) evaluation in Genomics of Drug Sensitivity in Cancer and Cancer Cell Line Encyclopedia datasets. In addition, DROEG is further applied to the pan-gastrointestinal tumor with high prevalence and mortality as a case study at both cell line and clinical levels to evaluate the model efficacy and discover potential prognostic biomarkers in Cisplatin and Epirubicin treatment. Interestingly, the CRISPR essential gene information is found to be the most important contributor to enhance the accuracy of the DROEG model. To our knowledge, this is the first study to integrate essential genes with multi-omics data to improve cancer drug response prediction and provide insights into personalized precision treatment.

摘要

由于肿瘤内和肿瘤间的异质性很高,预测癌症患者的治疗反应是精准医学领域的一个主要挑战。大多数药物反应模型在准确性方面需要改进,而且对于特定肿瘤类型的治疗反应评估的研究有限。在这里,我们开发了一种新的方法 DROEG(基于组学和必需基因的药物反应),通过整合基因组、转录组和甲基组数据以及 CRISPR 必需基因来预测肿瘤细胞系中的药物反应,并且表明纳入肿瘤增殖必需基因可以提高药物敏感性预测。简而言之,DROEG 集成了基于文献和基于统计学的方法来选择特征,并使用支持向量回归进行模型构建。我们证明,DROEG 通过在癌症药物敏感性基因组学和癌症细胞系百科全书中的数据进行定性(药物敏感/耐药的预测准确性)和定量(预测的和实际的 IC50 之间的皮尔逊相关系数)评估,优于大多数最先进的算法。此外,DROEG 进一步应用于具有高患病率和高死亡率的泛胃肠道肿瘤作为细胞系和临床水平的案例研究,以评估模型疗效并发现顺铂和表柔比星治疗中的潜在预后生物标志物。有趣的是,CRISPR 必需基因信息被发现是增强 DROEG 模型准确性的最重要贡献者。据我们所知,这是首次将必需基因与多组学数据集成以改善癌症药物反应预测并为个性化精准治疗提供见解的研究。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验