Suppr超能文献

图卷积网络在药物反应预测中的应用。

Graph Convolutional Networks for Drug Response Prediction.

出版信息

IEEE/ACM Trans Comput Biol Bioinform. 2022 Jan-Feb;19(1):146-154. doi: 10.1109/TCBB.2021.3060430. Epub 2022 Feb 3.

Abstract

BACKGROUND

Drug response prediction is an important problem in computational personalized medicine. Many machine-learning-based methods, especially deep learning-based ones, have been proposed for this task. However, these methods often represent the drugs as strings, which are not a natural way to depict molecules. Also, interpretation (e.g., what are the mutation or copy number aberration contributing to the drug response) has not been considered thoroughly.

METHODS

In this study, we propose a novel method, GraphDRP, based on graph convolutional network for the problem. In GraphDRP, drugs were represented in molecular graphs directly capturing the bonds among atoms, meanwhile cell lines were depicted as binary vectors of genomic aberrations. Representative features of drugs and cell lines were learned by convolution layers, then combined to represent for each drug-cell line pair. Finally, the response value of each drug-cell line pair was predicted by a fully-connected neural network. Four variants of graph convolutional networks were used for learning the features of drugs.

RESULTS

We found that GraphDRP outperforms tCNNS in all performance measures for all experiments. Also, through saliency maps of the resulting GraphDRP models, we discovered the contribution of the genomic aberrations to the responses.

CONCLUSION

Representing drugs as graphs can improve the performance of drug response prediction. Availability of data and materials: Data and source code can be downloaded athttps://github.com/hauldhut/GraphDRP.

摘要

背景

药物反应预测是计算个性化医学中的一个重要问题。许多基于机器学习的方法,特别是基于深度学习的方法,已经被提出用于解决这个问题。然而,这些方法通常将药物表示为字符串,这不是描述分子的自然方式。此外,解释(例如,哪些突变或拷贝数异常导致了药物反应)还没有被充分考虑。

方法

在这项研究中,我们提出了一种基于图卷积网络的新方法 GraphDRP 来解决这个问题。在 GraphDRP 中,药物直接以分子图的形式表示,直接捕捉原子之间的键,同时细胞系被描绘为基因组异常的二进制向量。药物和细胞系的代表性特征通过卷积层学习,然后组合起来表示每个药物-细胞系对。最后,通过全连接神经网络预测每个药物-细胞系对的反应值。使用了四种图卷积网络变体来学习药物的特征。

结果

我们发现 GraphDRP 在所有实验的所有性能指标上都优于 tCNNS。此外,通过生成的 GraphDRP 模型的显著图,我们发现了基因组异常对反应的贡献。

结论

将药物表示为图可以提高药物反应预测的性能。数据和材料的可用性:数据和源代码可以在 https://github.com/hauldhut/GraphDRP 下载。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验