Suppr超能文献

一项评估和改进药物敏感性预测算法的社区工作。

A community effort to assess and improve drug sensitivity prediction algorithms.

作者信息

Costello James C, Heiser Laura M, Georgii Elisabeth, Gönen Mehmet, Menden Michael P, Wang Nicholas J, Bansal Mukesh, Ammad-ud-din Muhammad, Hintsanen Petteri, Khan Suleiman A, Mpindi John-Patrick, Kallioniemi Olli, Honkela Antti, Aittokallio Tero, Wennerberg Krister, Collins James J, Gallahan Dan, Singer Dinah, Saez-Rodriguez Julio, Kaski Samuel, Gray Joe W, Stolovitzky Gustavo

机构信息

1] Howard Hughes Medical Institute, Boston University, Boston, Massachusetts, USA. [2] Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA. [3] [4].

1] Department of Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA. [2].

出版信息

Nat Biotechnol. 2014 Dec;32(12):1202-12. doi: 10.1038/nbt.2877. Epub 2014 Jun 1.

Abstract

Predicting the best treatment strategy from genomic information is a core goal of precision medicine. Here we focus on predicting drug response based on a cohort of genomic, epigenomic and proteomic profiling data sets measured in human breast cancer cell lines. Through a collaborative effort between the National Cancer Institute (NCI) and the Dialogue on Reverse Engineering Assessment and Methods (DREAM) project, we analyzed a total of 44 drug sensitivity prediction algorithms. The top-performing approaches modeled nonlinear relationships and incorporated biological pathway information. We found that gene expression microarrays consistently provided the best predictive power of the individual profiling data sets; however, performance was increased by including multiple, independent data sets. We discuss the innovations underlying the top-performing methodology, Bayesian multitask MKL, and we provide detailed descriptions of all methods. This study establishes benchmarks for drug sensitivity prediction and identifies approaches that can be leveraged for the development of new methods.

摘要

从基因组信息预测最佳治疗策略是精准医学的核心目标。在此,我们专注于基于在人类乳腺癌细胞系中测量的一组基因组、表观基因组和蛋白质组分析数据集来预测药物反应。通过美国国立癌症研究所(NCI)与逆向工程评估与方法对话(DREAM)项目之间的合作,我们总共分析了44种药物敏感性预测算法。表现最佳的方法对非线性关系进行建模并纳入了生物通路信息。我们发现基因表达微阵列始终能为各个分析数据集提供最佳预测能力;然而,通过纳入多个独立数据集,性能得到了提升。我们讨论了表现最佳的方法——贝叶斯多任务多核学习(Bayesian multitask MKL)背后的创新点,并提供了所有方法的详细描述。本研究建立了药物敏感性预测的基准,并确定了可用于开发新方法的途径。

相似文献

2
Predicting cancer drug response by proteomic profiling.通过蛋白质组学分析预测癌症药物反应。
Clin Cancer Res. 2006 Aug 1;12(15):4583-9. doi: 10.1158/1078-0432.CCR-06-0290.
3
Chemosensitivity prediction by transcriptional profiling.通过转录谱预测化学敏感性
Proc Natl Acad Sci U S A. 2001 Sep 11;98(19):10787-92. doi: 10.1073/pnas.191368598.

引用本文的文献

8
How to predict effective drug combinations - moving beyond synergy scores.如何预测有效的药物组合——超越协同分数
iScience. 2025 May 9;28(6):112622. doi: 10.1016/j.isci.2025.112622. eCollection 2025 Jun 20.

本文引用的文献

2
Modeling precision treatment of breast cancer.乳腺癌精准治疗建模
Genome Biol. 2013;14(10):R110. doi: 10.1186/gb-2013-14-10-r110.
4
Simultaneous identification of multiple driver pathways in cancer.同时鉴定癌症中的多个驱动途径。
PLoS Comput Biol. 2013;9(5):e1003054. doi: 10.1371/journal.pcbi.1003054. Epub 2013 May 23.
10
Comprehensive molecular portraits of human breast tumours.人类乳腺肿瘤的全面分子特征图谱。
Nature. 2012 Oct 4;490(7418):61-70. doi: 10.1038/nature11412. Epub 2012 Sep 23.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验