Suppr超能文献

可变形物体操作的建模、学习、感知和控制方法。

Modeling, learning, perception, and control methods for deformable object manipulation.

机构信息

Robotics, Perception, and Learning (RPL), School of Electrical Engineering and Computer Science, Royal Institute for Technology (KTH), Stockholm, Sweden.

出版信息

Sci Robot. 2021 May 26;6(54). doi: 10.1126/scirobotics.abd8803.

Abstract

Perceiving and handling deformable objects is an integral part of everyday life for humans. Automating tasks such as food handling, garment sorting, or assistive dressing requires open problems of modeling, perceiving, planning, and control to be solved. Recent advances in data-driven approaches, together with classical control and planning, can provide viable solutions to these open challenges. In addition, with the development of better simulation environments, we can generate and study scenarios that allow for benchmarking of various approaches and gain better understanding of what theoretical developments need to be made and how practical systems can be implemented and evaluated to provide flexible, scalable, and robust solutions. To this end, we survey more than 100 relevant studies in this area and use it as the basis to discuss open problems. We adopt a learning perspective to unify the discussion over analytical and data-driven approaches, addressing how to use and integrate model priors and task data in perceiving and manipulating a variety of deformable objects.

摘要

感知和处理变形物体是人类日常生活的重要组成部分。要实现食物处理、衣物分拣或辅助穿衣等任务的自动化,就需要解决建模、感知、规划和控制方面的难题。数据驱动方法的最新进展,以及经典控制和规划方法,可以为这些开放性挑战提供可行的解决方案。此外,随着更好的模拟环境的发展,我们可以生成和研究各种场景,从而对各种方法进行基准测试,并更好地理解需要进行哪些理论发展,以及如何实现和评估实际系统,以提供灵活、可扩展和鲁棒的解决方案。为此,我们调查了该领域的 100 多项相关研究,并以此为基础讨论了开放性问题。我们采用学习的视角将分析和数据驱动方法的讨论统一起来,探讨如何在感知和处理各种变形物体时使用和整合模型先验和任务数据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验