Suppr超能文献

学习机器人辅助穿衣的服装操作策略。

Learning garment manipulation policies toward robot-assisted dressing.

机构信息

Personal Robotics Laboratory, Department of Electrical and Electronic Engineering, Imperial College London, London, UK.

出版信息

Sci Robot. 2022 Apr 6;7(65):eabm6010. doi: 10.1126/scirobotics.abm6010.

Abstract

Assistive robots have the potential to support people with disabilities in a variety of activities of daily living, such as dressing. People who have completely lost their upper limb movement functionality may benefit from robot-assisted dressing, which involves complex deformable garment manipulation. Here, we report a dressing pipeline intended for these people and experimentally validate it on a medical training manikin. The pipeline is composed of the robot grasping a hospital gown hung on a rail, fully unfolding the gown, navigating around a bed, and lifting up the user's arms in sequence to finally dress the user. To automate this pipeline, we address two fundamental challenges: first, learning manipulation policies to bring the garment from an uncertain state into a configuration that facilitates robust dressing; second, transferring the deformable object manipulation policies learned in simulation to real world to leverage cost-effective data generation. We tackle the first challenge by proposing an active pre-grasp manipulation approach that learns to isolate the garment grasping area before grasping. The approach combines prehensile and nonprehensile actions and thus alleviates grasping-only behavioral uncertainties. For the second challenge, we bridge the sim-to-real gap of deformable object policy transfer by approximating the simulator to real-world garment physics. A contrastive neural network is introduced to compare pairs of real and simulated garment observations, measure their physical similarity, and account for simulator parameters inaccuracies. The proposed method enables a dual-arm robot to put back-opening hospital gowns onto a medical manikin with a success rate of more than 90%.

摘要

辅助机器人在日常生活的各种活动中都有可能为残障人士提供帮助,例如穿衣。完全丧失上肢运动功能的人可能会受益于机器人辅助穿衣,这涉及到复杂的可变形衣物操纵。在这里,我们报告了一个为这些人设计的穿衣流水线,并在医学培训人体模型上进行了实验验证。该流水线由机器人抓住挂在轨道上的病号服,完全展开病号服,绕过病床,依次抬起用户的手臂,最终为用户穿上衣服。为了实现这个流水线的自动化,我们解决了两个基本挑战:首先,学习操纵策略,将衣服从不确定的状态带到便于牢固穿衣的状态;其次,将在模拟中学习到的可变形物体操纵策略转移到现实世界,以利用具有成本效益的数据生成。我们通过提出一种主动预抓取操纵方法来解决第一个挑战,该方法学会在抓取之前隔离衣服的抓取区域。该方法结合了可抓取和不可抓取的动作,从而减轻了仅抓取的行为不确定性。对于第二个挑战,我们通过模拟近似来弥合可变形物体策略转移的模拟到现实差距。引入了对比神经网络来比较真实和模拟的衣物观察结果对,测量它们的物理相似性,并考虑到模拟器参数的不准确性。所提出的方法使双臂机器人能够以超过 90%的成功率将开襟式病号服穿回医学人体模型上。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验