Suppr超能文献

利用深度学习驱动的可拉伸触觉阵列捕捉与可变形物体的有力相互作用。

Capturing forceful interaction with deformable objects using a deep learning-powered stretchable tactile array.

作者信息

Jiang Chunpeng, Xu Wenqiang, Li Yutong, Yu Zhenjun, Wang Longchun, Hu Xiaotong, Xie Zhengyi, Liu Qingkun, Yang Bin, Wang Xiaolin, Du Wenxin, Tang Tutian, Zheng Dongzhe, Yao Siqiong, Lu Cewu, Liu Jingquan

机构信息

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai, China.

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.

出版信息

Nat Commun. 2024 Nov 4;15(1):9513. doi: 10.1038/s41467-024-53654-y.

Abstract

Capturing forceful interaction with deformable objects during manipulation benefits applications like virtual reality, telemedicine, and robotics. Replicating full hand-object states with complete geometry is challenging because of the occluded object deformations. Here, we report a visual-tactile recording and tracking system for manipulation featuring a stretchable tactile glove with 1152 force-sensing channels and a visual-tactile joint learning framework to estimate dynamic hand-object states during manipulation. To overcome the strain interference caused by contact with deformable objects, an active suppression method based on symmetric response detection and adaptive calibration is proposed and achieves 97.6% accuracy in force measurement, contributing to an improvement of 45.3%. The learning framework processes the visual-tactile sequence and reconstructs hand-object states. We experiment on 24 objects from 6 categories including both deformable and rigid ones with an average reconstruction error of 1.8 cm for all sequences, demonstrating a universal ability to replicate human knowledge in manipulating objects with varying degrees of deformability.

摘要

在操作过程中捕捉与可变形物体的有力交互,对虚拟现实、远程医疗和机器人技术等应用有益。由于物体变形被遮挡,完整复制具有完整几何形状的全手物体状态具有挑战性。在此,我们报告了一种用于操作的视觉触觉记录和跟踪系统,其具有一个带有1152个力传感通道的可拉伸触觉手套以及一个视觉触觉联合学习框架,用于估计操作过程中的动态手物体状态。为了克服与可变形物体接触引起的应变干扰,提出了一种基于对称响应检测和自适应校准的主动抑制方法,在力测量中实现了97.6%的准确率,提高了45.3%。该学习框架处理视觉触觉序列并重建手物体状态。我们对包括可变形和刚性物体在内的6类24个物体进行了实验,所有序列的平均重建误差为1.8厘米,展示了在复制人类操作不同变形程度物体知识方面的通用能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c887/11535439/37243e82a803/41467_2024_53654_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验