Suppr超能文献

为自我识别而进行操控,为更好地操控而进行自我识别。

Manipulation for self-Identification, and self-Identification for better manipulation.

作者信息

Hang Kaiyu, Bircher Walter G, Morgan Andrew S, Dollar Aaron M

机构信息

Department of Mechanical Engineering and Material Science, Yale University, New Haven, CT, USA.

出版信息

Sci Robot. 2021 May 19;6(54). doi: 10.1126/scirobotics.abe1321.

Abstract

The process of modeling a series of hand-object parameters is crucial for precise and controllable robotic in-hand manipulation because it enables the mapping from the hand's actuation input to the object's motion to be obtained. Without assuming that most of these model parameters are known a priori or can be easily estimated by sensors, we focus on equipping robots with the ability to actively self-identify necessary model parameters using minimal sensing. Here, we derive algorithms, on the basis of the concept of virtual linkage-based representations (VLRs), to self-identify the underlying mechanics of hand-object systems via exploratory manipulation actions and probabilistic reasoning and, in turn, show that the self-identified VLR can enable the control of precise in-hand manipulation. To validate our framework, we instantiated the proposed system on a Yale Model O hand without joint encoders or tactile sensors. The passive adaptability of the underactuated hand greatly facilitates the self-identification process, because they naturally secure stable hand-object interactions during random exploration. Relying solely on an in-hand camera, our system can effectively self-identify the VLRs, even when some fingers are replaced with novel designs. In addition, we show in-hand manipulation applications of handwriting, marble maze playing, and cup stacking to demonstrate the effectiveness of the VLR in precise in-hand manipulation control.

摘要

对一系列手部 - 物体参数进行建模的过程对于精确且可控的机器人手中操作至关重要,因为它能够实现从手部驱动输入到物体运动的映射。在不假设这些模型参数大多是先验已知或可通过传感器轻松估计的情况下,我们专注于使机器人具备使用最少传感来主动自我识别必要模型参数的能力。在此,我们基于基于虚拟连杆表示(VLR)的概念推导算法,通过探索性操作动作和概率推理来自我识别手部 - 物体系统的潜在力学原理,进而表明自我识别的VLR能够实现精确的手中操作控制。为了验证我们的框架,我们在没有关节编码器或触觉传感器的耶鲁O型手上实例化了所提出的系统。欠驱动手的被动适应性极大地促进了自我识别过程,因为它们在随机探索期间自然地确保了稳定的手部 - 物体交互。仅依靠手中的摄像头,我们的系统即使在一些手指被新颖设计替换的情况下也能有效地自我识别VLR。此外,我们展示了手写、弹珠迷宫游戏和杯子堆叠等手中操作应用,以证明VLR在精确手中操作控制中的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验