Transfers Interfaces and Processes (TIPs), Ecole Polytechnique de Bruxelles (CP 165/67), Université Libre de Bruxelles, 1050 Brussels, Belgium.
FEMTO-ST Institute, CNRS, Univ. Bourgogne Franche-Comté, 24 rue Savary, F-25000 Besançon, France.
Sci Robot. 2021 Mar 31;6(52). doi: 10.1126/scirobotics.abd3557.
Future developments in micromanufacturing will require advances in micromanipulation tools. Several robotic micromanipulation methods have been developed to position micro-objects mostly in air and in liquids. The air-water interface is a third medium where objects can be manipulated, offering a good compromise between the two previously mentioned ones. Objects at the interface are not subjected to stick-slip due to dry friction in air and profit from a reduced drag compared with those in water. Here, we present the ThermoBot, a microrobotic platform dedicated to the manipulation of objects placed at the air-water interface. For actuation, ThermoBot uses a laser-induced thermocapillary flow, which arises from the surface stress caused by the temperature gradient at the fluid interface. The actuated objects can reach velocities up to 10 times their body length per second without any on-board actuator. Moreover, the localized nature of the thermocapillary flow enables the simultaneous and independent control of multiple objects, thus paving the way for microassembly operations at the air-water interface. We demonstrate that our setup can be used to direct capillary-based self-assemblies at this interface. We illustrate the ThermoBot's capabilities through three examples: simultaneous control of up to four spheres, control of complex objects in both position and orientation, and directed self-assembly of multiple pieces.
微制造的未来发展将需要微操作工具的进步。已经开发了几种机器人微操作方法,主要用于在空气和液体中定位微物体。气-液界面是第三个可以进行操作的介质,它在前面提到的两种介质之间提供了一个很好的折衷方案。处于界面上的物体不会由于空气的干摩擦而产生粘滑现象,并且与水中的物体相比,其阻力更小。在这里,我们提出了 ThermoBot,这是一种专门用于操纵放置在气-液界面上的物体的微机器人平台。ThermoBot 采用激光诱导热毛细流进行驱动,这种流动是由流体界面处的温度梯度引起的表面应力产生的。被驱动的物体可以达到每秒超过其自身长度 10 倍的速度,而无需任何机载执行器。此外,热毛细流的局部性质使得可以同时独立地控制多个物体,从而为气-液界面上的微组装操作铺平了道路。我们证明了我们的设置可以用于在该界面上引导基于毛细作用的自组装。我们通过三个示例展示了 ThermoBot 的功能:同时控制多达四个球体、控制位置和方向上的复杂物体以及多个部件的定向自组装。