Dept. of Electrical Engineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA.
Dept. of Advanced Robotics, Chiba Institute of Technology, Narashino, Chiba, Japan.
Sci Rep. 2017 Jun 12;7(1):3278. doi: 10.1038/s41598-017-03525-y.
Micromanipulation for applications in areas such as tissue engineering can require mesoscale structures to be assembled with microscale resolution. One method for achieving such manipulation is the parallel actuation of many microrobots in parallel. However, current microrobot systems lack the independent actuation of many entities in parallel. Here, the independent actuation of fifty opto-thermocapillary flow-addressed bubble (OFB) microrobots in parallel is demonstrated. Individual microrobots and groups of microrobots were moved along linear, circular, and arbitrary 2D trajectories. The independent addressing of many microrobots enables higher-throughput microassembly of micro-objects, and cooperative manipulation using multiple microrobots. Demonstrations of manipulation with multiple OFB microrobots include the transportation of microstructures using a pair or team of microrobots, and the cooperative manipulation of multiple micro-objects. The results presented here represent an order of magnitude increase in the number of independently actuated microrobots in parallel as compared to other magnetically or electrostatically actuated microrobots, and a factor of two increase as compared to previous demonstrations of OFB microrobots.
微操控在组织工程等领域有广泛的应用需求,需要以微尺度分辨率来组装介观结构。实现这种操控的一种方法是并行驱动许多微机器人。然而,目前的微机器人系统缺乏对许多实体的并行独立驱动。在这里,我们展示了 50 个光热毛细流寻址气泡 (OFB) 微机器人的并行独立驱动。单个微机器人和微机器人组可以沿着线性、圆形和任意二维轨迹移动。多个微机器人的独立寻址能够实现更高通量的微组装和使用多个微机器人的协作操控。使用多个 OFB 微机器人进行操控的演示包括使用一对或一组微机器人来运输微结构,以及对多个微物体进行协作操控。与其他基于磁或静电驱动的微机器人相比,这里展示的结果在并行独立驱动的微机器人数量上增加了一个数量级,与之前的 OFB 微机器人演示相比,增加了两倍。