Suppr超能文献

具有可逆、时空控制的机器人表面,用于形状变形和物体操作。

Robotic surfaces with reversible, spatiotemporal control for shape morphing and object manipulation.

机构信息

Division of Engineering and Applied Science, California Institute of Technology, 1200 E California Blvd, Pasadena, CA 91105, USA.

Department of Mechanical and Process Engineering, ETH-Zürich, Rämistrasse 101, 8092 Zürich, Switzerland.

出版信息

Sci Robot. 2021 Apr 7;6(53). doi: 10.1126/scirobotics.abf5116.

Abstract

Continuous and controlled shape morphing is essential for soft machines to conform, grasp, and move while interacting safely with their surroundings. Shape morphing can be achieved with two-dimensional (2D) sheets that reconfigure into target 3D geometries, for example, using stimuli-responsive materials. However, most existing solutions lack the ability to reprogram their shape, face limitations on attainable geometries, or have insufficient mechanical stiffness to manipulate objects. Here, we develop a soft, robotic surface that allows for large, reprogrammable, and pliable shape morphing into smooth 3D geometries. The robotic surface consists of a layered design composed of two active networks serving as artificial muscles, one passive network serving as a skeleton, and cover scales serving as an artificial skin. The active network consists of a grid of strips made of heat-responsive liquid crystal elastomers (LCEs) containing stretchable heating coils. The magnitude and speed of contraction of the LCEs can be controlled by varying the input electric currents. The 1D contraction of the LCE strips activates in-plane and out-of-plane deformations; these deformations are both necessary to transform a flat surface into arbitrary 3D geometries. We characterize the fundamental deformation response of the layers and derive a control scheme for actuation. We demonstrate that the robotic surface provides sufficient mechanical stiffness and stability to manipulate other objects. This approach has potential to address the needs of a range of applications beyond shape changes, such as human-robot interactions and reconfigurable electronics.

摘要

连续和受控的形状变形对于软机器在与周围环境安全交互的同时进行自适应、抓取和移动至关重要。形状变形可以通过二维 (2D) 薄片来实现,这些薄片可以重新配置为目标 3D 几何形状,例如使用对刺激有响应的材料。然而,大多数现有解决方案缺乏重新编程其形状的能力,在可实现的几何形状方面存在限制,或者机械刚度不足以操纵物体。在这里,我们开发了一种柔软的机器人表面,允许进行大尺寸、可重新编程和柔韧的形状变形,形成光滑的 3D 几何形状。该机器人表面由分层设计组成,包括两个作为人造肌肉的主动网络、一个作为骨架的被动网络和作为人造皮肤的覆盖鳞片。主动网络由一个由热响应液晶弹性体 (LCE) 制成的网格带组成,其中包含可拉伸的加热线圈。LCE 的收缩幅度和速度可以通过改变输入电流来控制。LCE 带的 1D 收缩激活了平面内和平面外变形;这些变形都是将平面表面转化为任意 3D 几何形状所必需的。我们对各层的基本变形响应进行了表征,并推导出了一种用于驱动的控制方案。我们证明了机器人表面具有足够的机械刚度和稳定性,可以操纵其他物体。这种方法有可能满足除形状变化以外的一系列应用的需求,例如人机交互和可重构电子学。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验