Zhang Tianjiao, Gao James S, Çukur Tolga, Gallant Jack L
Program in Bioengineering, University of California, Berkeley, Berkeley, CA, United States.
Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States.
Front Neurosci. 2021 May 6;14:565976. doi: 10.3389/fnins.2020.565976. eCollection 2020.
Complex natural tasks likely recruit many different functional brain networks, but it is difficult to predict how such tasks will be represented across cortical areas and networks. Previous electrophysiology studies suggest that task variables are represented in a low-dimensional subspace within the activity space of neural populations. Here we develop a method for recovering task-related state spaces from human fMRI data. We apply this method to data acquired in a controlled visual attention task and a video game task. We find that each task induces distinct brain states that can be embedded in a low-dimensional state space that reflects task parameters, and that attention increases state separation in the task-related subspace. Our results demonstrate that the state space framework offers a powerful approach for modeling human brain activity elicited by complex natural tasks.
复杂的自然任务可能会调动许多不同的功能性脑网络,但很难预测此类任务将如何在皮质区域和网络中呈现。先前的电生理学研究表明,任务变量在神经群体活动空间内的低维子空间中得到呈现。在此,我们开发了一种从人类功能磁共振成像(fMRI)数据中恢复与任务相关的状态空间的方法。我们将此方法应用于在受控视觉注意力任务和视频游戏任务中获取的数据。我们发现,每个任务都会诱发可嵌入反映任务参数的低维状态空间中的独特脑状态,并且注意力会增加任务相关子空间中的状态分离。我们的结果表明,状态空间框架为模拟由复杂自然任务引发的人类脑活动提供了一种强大的方法。