Suppr超能文献

从天然到设计:用于工业应用的微生物淀粉酶

Native to designed: microbial -amylases for industrial applications.

作者信息

Lim Si Jie, Oslan Siti Nurbaya

机构信息

Enzyme Technology Laboratory, VacBio 5, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

Enzyme and Microbial Technology (EMTech) Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.

出版信息

PeerJ. 2021 May 18;9:e11315. doi: 10.7717/peerj.11315. eCollection 2021.

Abstract

BACKGROUND

-amylases catalyze the endo-hydrolysis of -1,4-D-glycosidic bonds in starch into smaller moieties. While industrial processes are usually performed at harsh conditions, -amylases from mainly the bacteria, fungi and yeasts are preferred for their stabilities (thermal, pH and oxidative) and specificities (substrate and product). Microbial -amylases can be purified and characterized for industrial applications. While exploring novel enzymes with these properties in the nature is time-costly, the advancements in protein engineering techniques including rational design, directed evolution and others have privileged their modifications to exhibit industrially ideal traits. However, the commentary on the strategies and preferably mutated residues are lacking, hindering the design of new mutants especially for enhanced substrate specificity and oxidative stability. Thus, our review ensures wider accessibility of the previously reported experimental findings to facilitate the future engineering work.

SURVEY METHODOLOGY AND OBJECTIVES

A traditional review approach was taken to focus on the engineering of microbial -amylases to enhance industrially favoured characteristics. The action mechanisms of - and -amylases were compared to avoid any bias in the research background. This review aimed to discuss the advances in modifying microbial -amylases via protein engineering to achieve longer half-life in high temperature, improved resistance (acidic, alkaline and oxidative) and enhanced specificities (substrate and product). Captivating results were discussed in depth, including the extended half-life at 100C, pH 3.5 and 10, 1.8 M hydrogen peroxide as well as enhanced substrate (65.3%) and product (42.4%) specificities. These shed light to the future microbial -amylase engineering in achieving paramount biochemical traits ameliorations to apt in the industries.

CONCLUSIONS

Microbial -amylases can be tailored for specific industrial applications through protein engineering (rational design and directed evolution). While the critical mutation points are dependent on respective enzymes, formation of disulfide bridge between cysteine residues after mutations is crucial for elevated thermostability. Amino acids conversion to basic residues was reported for enhanced acidic resistance while hydrophobic interaction resulted from mutated hydrophobic residues in carbohydrate-binding module or surface-binding sites is pivotal for improved substrate specificity. Substitution of oxidation-prone methionine residues with non-polar residues increases the enzyme oxidative stability. Hence, this review provides conceptual advances for the future microbial -amylases designs to exhibit industrially significant characteristics. However, more attention is needed to enhance substrate specificity and oxidative stability since they are least reported.

摘要

背景

α-淀粉酶催化淀粉中α-1,4-D-糖苷键的内切水解,生成较小的分子。虽然工业过程通常在苛刻条件下进行,但主要来自细菌、真菌和酵母的α-淀粉酶因其稳定性(热稳定性、pH稳定性和氧化稳定性)和特异性(底物特异性和产物特异性)而更受青睐。微生物α-淀粉酶可进行纯化并表征以用于工业应用。虽然在自然界中探索具有这些特性的新型酶既耗时又费成本,但包括理性设计、定向进化等在内的蛋白质工程技术的进步,使人们能够对其进行改造以展现出工业上理想的特性。然而,目前缺乏对相关策略及优选突变残基的评论,这阻碍了新型突变体的设计,尤其是在增强底物特异性和氧化稳定性方面。因此,我们的综述确保了先前报道的实验结果能更广泛地被获取,以促进未来的工程工作。

调查方法与目标

采用传统综述方法,聚焦于微生物α-淀粉酶的工程改造,以增强其在工业上有利的特性。比较了α-淀粉酶和β-淀粉酶的作用机制,以避免研究背景中的任何偏差。本综述旨在讨论通过蛋白质工程改造微生物α-淀粉酶以在高温下实现更长半衰期、提高抗性(耐酸性、耐碱性和抗氧化性)以及增强特异性(底物特异性和产物特异性)方面的进展。深入讨论了引人注目的结果,包括在100℃、pH 3.5和10、1.8 M过氧化氢条件下延长的半衰期,以及增强的底物(65.3%)和产物(42.4%)特异性。这些结果为未来微生物α-淀粉酶工程实现卓越的生化特性改善以适应工业需求提供了思路。

结论

通过蛋白质工程(理性设计和定向进化),微生物α-淀粉酶可针对特定工业应用进行定制。虽然关键突变点取决于各自的酶,但突变后半胱氨酸残基之间形成二硫键对于提高热稳定性至关重要。据报道,将氨基酸转化为碱性残基可增强耐酸性,而碳水化合物结合模块或表面结合位点中突变的疏水残基产生的疏水相互作用对于提高底物特异性至关重要。用非极性残基取代易氧化的甲硫氨酸残基可提高酶的氧化稳定性。因此,本综述为未来微生物α-淀粉酶设计展现出工业上显著的特性提供了概念性进展。然而,由于底物特异性和氧化稳定性方面的报道最少,因此需要更多关注以增强这两方面的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6235/8139272/dc70e8e5d11f/peerj-09-11315-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验