Suppr超能文献

基于指南的决策树构建用于药物推荐。

Construction of Guideline-Based Decision Tree for Medication Recommendation.

机构信息

Ping An Health Technology, Beijing, China.

出版信息

Stud Health Technol Inform. 2023 Dec 11;311:13-23. doi: 10.3233/SHTI200015.

Abstract

Clinical decision support system (CDSS) plays an essential role nowadays and CDSS for treatment provides clinicians with the clinical evidence of candidate prescriptions to assist them in making patient-specific decisions. Therefore, it is essential to find a partition of patients such that patients with similar clinical conditions are grouped together and the preferred prescriptions for different groups are diverged. A comprehensive clinical guideline often provides information of patient partition. However, for most diseases, the guideline is not so detailed that only limited circumstances are covered. This makes it challenging to group patients properly. Here we proposed an approach that combines clinical guidelines with medical data to construct a nested decision tree for patient partitioning and treatment recommendation. Compared with pure data-driven decision tree, the recommendations generated by our model have better guideline adherence and interpretability. The approach was successfully applied in a real-world case study of patients with hyperthyroidism.

摘要

临床决策支持系统(CDSS)在现今扮演着重要的角色,而治疗用的 CDSS 则为临床医生提供候选处方的临床证据,以协助他们做出针对患者个体的决策。因此,找到一种患者分组的方法至关重要,这种方法应使得具有相似临床状况的患者被分在一组,而不同组的首选处方则存在差异。全面的临床指南通常会提供患者分组的信息。然而,对于大多数疾病,指南并不那么详细,只涵盖了有限的情况。这使得正确分组患者变得具有挑战性。在这里,我们提出了一种将临床指南与医疗数据相结合的方法,以构建嵌套决策树进行患者分组和治疗推荐。与纯数据驱动的决策树相比,我们的模型生成的推荐具有更好的指南依从性和可解释性。该方法已成功应用于甲状腺功能亢进症患者的真实案例研究中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验