Suppr超能文献

基于证据的临床指南推荐意见依从性的自动化监测:设计与实施研究。

Automated Monitoring of Adherence to Evidenced-Based Clinical Guideline Recommendations: Design and Implementation Study.

机构信息

Department of Anesthesia, Critical Care, Emergency and Pain Medicine, Universitätsmedizin Greifswald, Greifswald, Germany.

Department of Anesthesiology and Operative Intensive Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.

出版信息

J Med Internet Res. 2023 May 4;25:e41177. doi: 10.2196/41177.

Abstract

BACKGROUND

Clinical practice guidelines are systematically developed statements intended to optimize patient care. However, a gapless implementation of guideline recommendations requires health care personnel not only to be aware of the recommendations and to support their content but also to recognize every situation in which they are applicable. To not miss situations in which recommendations should be applied, computerized clinical decision support can be provided through a system that allows an automated monitoring of adherence to clinical guideline recommendations in individual patients.

OBJECTIVE

This study aims to collect and analyze the requirements for a system that allows the monitoring of adherence to evidence-based clinical guideline recommendations in individual patients and, based on these requirements, to design and implement a software prototype that integrates guideline recommendations with individual patient data, and to demonstrate the prototype's utility in treatment recommendations.

METHODS

We performed a work process analysis with experienced intensive care clinicians to develop a conceptual model of how to support guideline adherence monitoring in clinical routine and identified which steps in the model could be supported electronically. We then identified the core requirements of a software system to support recommendation adherence monitoring in a consensus-based requirements analysis within the loosely structured focus group work of key stakeholders (clinicians, guideline developers, health data engineers, and software developers). On the basis of these requirements, we designed and implemented a modular system architecture. To demonstrate its utility, we applied the prototype to monitor adherence to a COVID-19 treatment recommendation using clinical data from a large European university hospital.

RESULTS

We designed a system that integrates guideline recommendations with real-time clinical data to evaluate individual guideline recommendation adherence and developed a functional prototype. The needs analysis with clinical staff resulted in a flowchart describing the work process of how adherence to recommendations should be monitored. Four core requirements were identified: the ability to decide whether a recommendation is applicable and implemented for a specific patient, the ability to integrate clinical data from different data formats and data structures, the ability to display raw patient data, and the use of a Fast Healthcare Interoperability Resources-based format for the representation of clinical practice guidelines to provide an interoperable, standards-based guideline recommendation exchange format.

CONCLUSIONS

Our system has advantages in terms of individual patient treatment and quality management in hospitals. However, further studies are needed to measure its impact on patient outcomes and evaluate its resource effectiveness in different clinical settings. We specified a modular software architecture that allows experts from different fields to work independently and focus on their area of expertise. We have released the source code of our system under an open-source license and invite for collaborative further development of the system.

摘要

背景

临床实践指南是旨在优化患者护理的系统制定的陈述。然而,要无缝实施指南建议,医疗保健人员不仅需要了解建议并支持其内容,还需要认识到适用于每种情况的建议。为了不错过应该应用建议的情况,可以通过允许自动监测个别患者对临床指南建议的依从性的系统提供计算机化临床决策支持。

目的

本研究旨在收集和分析允许监测个别患者对基于证据的临床指南建议的依从性的系统要求,并基于这些要求设计和实施一个软件原型,该原型将指南建议与个别患者数据集成,并展示原型在治疗建议中的实用性。

方法

我们与经验丰富的重症监护临床医生一起进行了工作流程分析,以开发一个概念模型,说明如何在临床常规中支持指南依从性监测,并确定模型中的哪些步骤可以通过电子方式支持。然后,我们在由关键利益相关者(临床医生、指南制定者、健康数据工程师和软件开发人员)进行的松散结构焦点小组工作的共识基础上进行了基于需求的需求分析,以确定支持推荐依从性监测的软件系统的核心要求。在此基础上,我们设计并实施了一个模块化系统架构。为了展示其实用性,我们使用来自一家大型欧洲大学医院的临床数据来应用该原型来监测 COVID-19 治疗建议的依从性。

结果

我们设计了一个将指南建议与实时临床数据集成以评估个别指南建议依从性的系统,并开发了一个功能原型。与临床人员的需求分析产生了一个流程图,描述了监测建议依从性的工作流程。确定了四个核心要求:决定是否为特定患者适用和实施建议的能力、集成来自不同数据格式和数据结构的临床数据的能力、显示原始患者数据的能力以及使用 Fast Healthcare Interoperability Resources 格式表示临床实践指南的能力,以提供一种可互操作的、基于标准的指南建议交换格式。

结论

我们的系统在医院的个体患者治疗和质量管理方面具有优势。然而,需要进一步的研究来衡量其对患者结局的影响,并评估其在不同临床环境中的资源效益。我们指定了一个模块化软件架构,允许来自不同领域的专家独立工作并专注于他们的专业领域。我们已根据开源许可证发布了我们系统的源代码,并邀请各方共同进一步开发该系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff0c/10162484/dc4e462627d9/jmir_v25i1e41177_fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验