Suppr超能文献

利用历史数据建模反刍动物寄生虫空间分布的限制。

Constraints of using historical data for modelling the spatial distribution of helminth parasites in ruminants.

机构信息

Department of Research and Development, Avia-GIS NV, 2980 Zoersel, Belgium.

CREMOPAR, Department of Veterinary Medicine and Animal Production, University of Naples Federico II, 80138 Naples, Italy.

出版信息

Parasite. 2021;28:46. doi: 10.1051/parasite/2021042. Epub 2021 May 27.

Abstract

Dicrocoelium dendriticum is a trematode that infects ruminant livestock and requires two different intermediate hosts to complete its lifecycle. Modelling the spatial distribution of this parasite can help to improve its management in higher risk regions. The aim of this research was to assess the constraints of using historical data sets when modelling the spatial distribution of helminth parasites in ruminants. A parasitological data set provided by CREMOPAR (Napoli, Italy) and covering most of Italy was used in this paper. A baseline model (Random Forest, VECMAP) using the entire data set was first used to determine the minimal number of data points needed to build a stable model. Then, annual distribution models were computed and compared with the baseline model. The best prediction rate and statistical output were obtained for 2012 and the worst for 2016, even though the sample size of the former was significantly smaller than the latter. We discuss how this may be explained by the fact that in 2012, the samples were more evenly geographically distributed, whilst in 2016 most of the data were strongly clustered. It is concluded that the spatial distribution of the input data appears to be more important than the actual sample size when computing species distribution models. This is often a major issue when using historical data to develop spatial models. Such data sets often include sampling biases and large geographical gaps. If this bias is not corrected, the spatial distribution model outputs may display the sampling effort rather than the real species distribution.

摘要

双腔吸虫是一种寄生在反刍家畜身上的吸虫,它需要两种不同的中间宿主来完成其生命周期。对这种寄生虫的空间分布进行建模可以帮助改善其在高风险地区的管理。本研究旨在评估在反刍动物寄生虫空间分布建模中使用历史数据集的限制。本文使用了由 CREMOPAR(那不勒斯,意大利)提供的涵盖意大利大部分地区的寄生虫学数据集。首先使用整个数据集的基线模型(随机森林,VECMAP)来确定构建稳定模型所需的最小数据点数。然后,计算了年度分布模型并将其与基线模型进行了比较。2012 年获得了最佳预测率和统计输出,而 2016 年则最差,尽管前者的样本量明显小于后者。我们讨论了这种情况可能是由于 2012 年样本在地理上分布更加均匀,而 2016 年大部分数据则高度聚集。因此得出结论,在计算物种分布模型时,输入数据的空间分布似乎比实际样本量更为重要。当使用历史数据来开发空间模型时,这通常是一个主要问题。这些数据集通常包含采样偏差和较大的地理差距。如果不纠正这种偏差,空间分布模型的输出可能会显示采样工作,而不是真实的物种分布。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b097/8162060/febff385cba8/parasite-28-46-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验