Suppr超能文献

基于细胞培养介质的 MSC 衍生外泌体的再生生物活性比较分析。

Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity.

机构信息

Department of Biomedical Science, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea.

Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 16419, Republic of Korea.

出版信息

Tissue Eng Regen Med. 2021 Jun;18(3):355-367. doi: 10.1007/s13770-021-00352-1. Epub 2021 May 28.

Abstract

BACKGROUND

In order to produce and isolate the exosome derived from the cell of interests, a serum free environment (starvation) has been essential for excluding the unknown effect from serum-derived exosomes. Recently, serum-free culture media have been developed as a substitute for serum supplemented media so that MSC proliferates with maintaining the original characteristics of the cells in a serum free condition. Due to the different properties of the exosomes representing the states and characteristics of the origin cells, a study is needed to compare the properties of the cell-derived exosomes according to the cell culture media.

METHODS

To compare the cell culture condition on exosomes, human umbilical cord mesenchymal stem cells (UCMSCs) were cultured with two different media, serum containing media, 10% FBS supplemented DMEM (NM) and serum-free chemically defined media, CellCor™ CD MSC (CDM). To remove FBS-derived exosomes from UCMSC cultured with NM, the medium was replaced with FBS-free DMEM for starvation during exosome isolation. The production yield and expression levels of angiogenic and pro-inflammatory factors were compared. And, the subpopulations of exosome were classified depending on the surface properties and loaded cytokines. Finally, the wound healing and angiogenic effects have been evaluated using in vitro assays.

RESULTS

The UCMSC-derived exosomes under two different cell culture media could be classified into subpopulations according to the surface composition and loaded cytokines. Especially, exosome derived from UCMSC cultured with CDM showed higher expression levels of cytokines related to regenerative bioactivities which resulted in enhanced wound healing and angiogenesis.

CONCLUSION

CDM has the advantages to maintain cell proliferation even during the period of exosome isolations and eliminate unknown side effects caused by serum-derived exosomes. Additionally, exosomes derived from UCMSC cultured with CDM show better wound healing and angiogenic effects due to a lot of regeneration-related cytokines and less pro-inflammatory cytokines compared to with NM.

摘要

背景

为了产生和分离来源于目的细胞的外泌体,无血清环境(饥饿)对于排除血清来源的外泌体的未知影响是必不可少的。最近,无血清培养基已被开发出来作为血清补充培养基的替代品,以使 MSC 在无血清条件下增殖,同时保持细胞的原始特征。由于代表起源细胞状态和特征的外泌体的性质不同,因此需要进行研究以比较根据细胞培养培养基的细胞来源外泌体的性质。

方法

为了比较细胞培养条件对外泌体的影响,将人脐带间充质干细胞(UCMSC)分别在两种不同的培养基中培养,一种是含有血清的培养基,10% FBS 补充的 DMEM(NM),另一种是无血清的化学定义培养基,CellCor™ CD MSC(CDM)。为了从 NM 培养的 UCMSC 中去除 FBS 来源的外泌体,在分离外泌体期间,将培养基用无 FBS 的 DMEM 替换。比较了产率和表达水平的血管生成和促炎因子。并且,根据表面特性和加载的细胞因子对外泌体进行了分类。最后,通过体外试验评估了伤口愈合和血管生成的效果。

结果

两种不同细胞培养培养基下的 UCMSC 衍生的外泌体可以根据表面组成和加载的细胞因子进行分类。特别是,CDM 培养的 UCMSC 衍生的外泌体显示出更高水平的与再生生物活性相关的细胞因子,这导致了增强的伤口愈合和血管生成。

结论

CDM 具有在分离外泌体期间维持细胞增殖的优势,并且可以消除由血清来源的外泌体引起的未知副作用。此外,与 NM 相比,CDM 培养的 UCMSC 衍生的外泌体由于具有更多的再生相关细胞因子和更少的促炎细胞因子,因此具有更好的伤口愈合和血管生成效果。

相似文献

1
Comparative Analysis of MSC-Derived Exosomes Depending on Cell Culture Media for Regenerative Bioactivity.
Tissue Eng Regen Med. 2021 Jun;18(3):355-367. doi: 10.1007/s13770-021-00352-1. Epub 2021 May 28.
2
Defined MSC exosome with high yield and purity to improve regenerative activity.
J Tissue Eng. 2021 Apr 20;12:20417314211008626. doi: 10.1177/20417314211008626. eCollection 2021 Jan-Dec.
4
[Pooled Umbilical Cord Blood Plasma for Culturing UCMSC and Ex Vivo Expanding Umbilical Cord Blood CD34⁺ Cells].
Zhongguo Shi Yan Xue Ye Xue Za Zhi. 2015 Aug;23(4):1112-9. doi: 10.7534/j.issn.1009-2137.2015.04.040.
10
[Research on feasibility of in vitro inflammatory wound microenvironment simulated by using inflammatory wound tissue homogenate of mice].
Zhonghua Shao Shang Za Zhi. 2020 Nov 20;36(11):1024-1034. doi: 10.3760/cma.j.cn501120-20200720-00351.

引用本文的文献

1
Emerging technologies towards extracellular vesicles large-scale production.
Bioact Mater. 2025 Jun 13;52:338-365. doi: 10.1016/j.bioactmat.2025.06.005. eCollection 2025 Oct.
2
The potential of exosomes in regenerative medicine and in the diagnosis and therapies of neurodegenerative diseases and cancer.
Front Med (Lausanne). 2025 Mar 13;12:1539714. doi: 10.3389/fmed.2025.1539714. eCollection 2025.
4
The Potential of Mesenchymal Stem Cell-Derived Exosomes to Treat Diabetes Mellitus.
Biomimetics (Basel). 2025 Jan 14;10(1):49. doi: 10.3390/biomimetics10010049.
6
Mesenchymal Stem Cell-Derived Exosomes as a Neuroregeneration Treatment for Alzheimer's Disease.
Biomedicines. 2024 Sep 17;12(9):2113. doi: 10.3390/biomedicines12092113.
7
Exosome-mediated renal protection: Halting the progression of fibrosis.
Genes Dis. 2023 Sep 19;11(6):101117. doi: 10.1016/j.gendis.2023.101117. eCollection 2024 Nov.
8
Extracellular vesicle therapy in neurological disorders.
J Biomed Sci. 2024 Aug 25;31(1):85. doi: 10.1186/s12929-024-01075-w.

本文引用的文献

1
Defined MSC exosome with high yield and purity to improve regenerative activity.
J Tissue Eng. 2021 Apr 20;12:20417314211008626. doi: 10.1177/20417314211008626. eCollection 2021 Jan-Dec.
2
Integrated Bioactive Scaffold with Polydeoxyribonucleotide and Stem-Cell-Derived Extracellular Vesicles for Kidney Regeneration.
ACS Nano. 2021 Apr 27;15(4):7575-7585. doi: 10.1021/acsnano.1c01098. Epub 2021 Mar 16.
4
Regulation of exosome production and cargo sorting.
Int J Biol Sci. 2021 Jan 1;17(1):163-177. doi: 10.7150/ijbs.53671. eCollection 2021.
5
Extracellular vesicles derived from human dental pulp stem cells promote osteogenesis of adipose-derived stem cells via the MAPK pathway.
J Tissue Eng. 2020 Dec 2;11:2041731420975569. doi: 10.1177/2041731420975569. eCollection 2020 Jan-Dec.
6
Improvement of stem cell-derived exosome release efficiency by surface-modified nanoparticles.
J Nanobiotechnology. 2020 Dec 7;18(1):178. doi: 10.1186/s12951-020-00739-7.
8
Mesenchymal stem cells for cartilage regeneration.
J Tissue Eng. 2020 Aug 26;11:2041731420943839. doi: 10.1177/2041731420943839. eCollection 2020 Jan-Dec.
9
Glutamine deprivation alters the origin and function of cancer cell exosomes.
EMBO J. 2020 Aug 17;39(16):e103009. doi: 10.15252/embj.2019103009. Epub 2020 Jul 28.
10
Nanomaterial based drug delivery systems for the treatment of neurodegenerative diseases.
Biomater Sci. 2020 Aug 7;8(15):4109-4128. doi: 10.1039/d0bm00809e. Epub 2020 Jul 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验