Suppr超能文献

术前影像学和患者因素对骨软骨同种异体移植术后临床有意义的结果和生活质量的影响:膝关节软骨缺损的机器学习分析。

Effect of Preoperative Imaging and Patient Factors on Clinically Meaningful Outcomes and Quality of Life After Osteochondral Allograft Transplantation: A Machine Learning Analysis of Cartilage Defects of the Knee.

机构信息

Orthopaedic Machine Learning Laboratory, Cleveland Clinic, Cleveland, Ohio, USA.

Sports Medicine and Shoulder Service, Institute for Cartilage Repair Hospital for Special Surgery, New York, New York, USA.

出版信息

Am J Sports Med. 2021 Jul;49(8):2177-2186. doi: 10.1177/03635465211015179. Epub 2021 May 28.

Abstract

BACKGROUND

Fresh osteochondral allograft transplantation (OCA) is an effective method of treating symptomatic cartilage defects of the knee. This restoration technique involves the single-stage implantation of viable, mature hyaline cartilage into a chondral or osteochondral lesion. The extent to which preoperative imaging and patient factors predict achieving clinically meaningful outcomes among patients undergoing OCA for cartilage lesions of the knee remains unknown.

PURPOSE

To determine the predictive relationship of preoperative imaging, preoperative patient-reported outcome measures (PROMs), and patient demographics with achievement of the minimal clinically important difference (MCID) and substantial clinical benefit (SCB) for functional and quality-of-life PROMs at 2 years after OCA for symptomatic cartilage defects of the knee.

STUDY DESIGN

Case-control study; Level of evidence, 3.

METHODS

Data were analyzed for patients who underwent OCA before May 1, 2018, by 2 high-volume fellowship-trained cartilage surgeons. The International Knee Documentation Committee (IKDC) subjective form, Knee Outcome Survey-Activities of Daily Living (KOS-ADL), and mental and physical component summaries of the SF-36 were administered preoperatively and at 2 years postoperatively. A total of 42 predictive models were created using 7 unique architectures to detect achievement of the MCID for each of the 4 outcome measures and the SCB for the IKDC and KOS-ADL. Data inputted into the models included sex, age, body mass index, baseline PROMs, lesion size, concomitant ligamentous or meniscal tear, and presence of "bone bruise" or osseous edema. Shapley additive explanations plot analysis identified predictors of reaching the MCID and SCB.

RESULTS

Of the 185 patients who underwent OCA for the knee and met eligibility criteria from an institutional cartilage registry, 153 (83%) had 2-year follow-up. Preoperative magnetic resonance imaging (MRI), baseline PROMs, and patient demographics best predicted reaching the 2-year MCID and SCB of the IKDC and KOS-ADL PROMs, with areas under the receiver operating characteristic curve of the top-performing models ranging from good (0.88) to excellent (0.91). MRI faired poorly (areas under the curve, 0.60-0.68) in predicting the MCID for the mental and physical component summaries. Higher body mass index, knee malalignment, absence of preoperative osseous edema, concomitant anterior cruciate ligament or meniscal injury, larger defect size, and the implantation of >1 OCA graft were consistent findings contributing to failure to achieve the MCID or SCB at 2 years postoperatively.

CONCLUSION

Our machine learning models demonstrated that preoperative MRI, baseline PROMs, and patient demographics reliably predict the ability to reach clinically meaningful thresholds for functional knee outcomes 2 years after OCA for cartilage defects. Although clinical improvement in knee function can be reliably predicted, improvements in quality of life after OCA depend on a comprehensive preoperative assessment of the patient's perception of his or her mental and physical health. Absence of osseous edema, concomitant anterior cruciate ligament or meniscal injury, larger lesion size on MRI, knee malalignment, and elevated body mass index are predictive of failure to achieve 2-year functional benefits after OCA of the knee.

摘要

背景

新鲜骨软骨同种异体移植(OCA)是治疗膝关节症状性软骨缺损的有效方法。这种修复技术涉及将有活力的成熟透明软骨一次性植入软骨或骨软骨病变部位。对于接受 OCA 治疗膝关节软骨病变的患者,术前影像学和患者因素在多大程度上可以预测达到有临床意义的结果仍然未知。

目的

确定术前影像学、术前患者报告的结局测量(PROM)和患者人口统计学与达到膝关节症状性软骨缺损 OCA 后 2 年的最小临床重要差异(MCID)和实质性临床获益(SCB)的预测关系,以实现功能和生活质量 PROM 的 MCID 和 SCB。

研究设计

病例对照研究;证据水平,3 级。

方法

对 2 名高容量 fellowship培训的软骨外科医生于 2018 年 5 月 1 日前进行 OCA 的患者进行数据分析。国际膝关节文献委员会(IKDC)主观表、膝关节结果调查-日常生活活动(KOS-ADL)以及 SF-36 的心理和身体成分摘要在术前和术后 2 年进行评估。使用 7 种独特的架构创建了 42 个预测模型,以检测每个 4 个结局测量的 MCID 和 IKDC 和 KOS-ADL 的 SCB 的实现。输入到模型中的数据包括性别、年龄、体重指数、基线 PROM、病变大小、同时存在的韧带或半月板撕裂以及“骨挫伤”或骨水肿的存在。Shapley 加法解释图分析确定了达到 MCID 和 SCB 的预测因素。

结果

从机构软骨登记处接受 OCA 治疗膝关节并符合入选标准的 185 名患者中,有 153 名(83%)有 2 年随访。术前磁共振成像(MRI)、基线 PROM 和患者人口统计学资料最好地预测了 IKDC 和 KOS-ADL PROM 达到 2 年 MCID 和 SCB,最佳模型的受试者工作特征曲线下面积范围从良好(0.88)到优秀(0.91)。MRI 在预测心理和身体成分摘要的 MCID 方面表现不佳(曲线下面积,0.60-0.68)。较高的体重指数、膝关节对线不良、术前无骨水肿、同时存在前交叉韧带或半月板损伤、较大的缺损大小以及>1 个 OCA 移植物的植入是导致术后 2 年无法达到 MCID 或 SCB 的一致发现。

结论

我们的机器学习模型表明,术前 MRI、基线 PROM 和患者人口统计学资料可可靠预测 OCA 治疗软骨缺损后 2 年内达到膝关节功能有临床意义阈值的能力。虽然可以可靠地预测膝关节功能的临床改善,但 OCA 后生活质量的改善取决于对患者感知自身心理健康和身体健康的全面术前评估。骨水肿、同时存在前交叉韧带或半月板损伤、MRI 上较大的病变大小、膝关节对线不良和体重指数升高是预测 OCA 后 2 年内无法获得功能益处的预测因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验