Suppr超能文献

人工智能在骨科研究中用于具有临床意义的结果预测:当前应用与局限性

Artificial Intelligence for Clinically Meaningful Outcome Prediction in Orthopedic Research: Current Applications and Limitations.

作者信息

Jang Seong Jun, Rosenstadt Jake, Lee Eugenia, Kunze Kyle N

机构信息

Department of Orthopedic Surgery, Hospital for Special Surgery, 535 East 70Th Street, New York, NY, 10021, USA.

Georgetown University School of Medicine, Washington, DC, USA.

出版信息

Curr Rev Musculoskelet Med. 2024 Jun;17(6):185-206. doi: 10.1007/s12178-024-09893-z. Epub 2024 Apr 8.

Abstract

PURPOSE OF REVIEW

Patient-reported outcome measures (PROM) play a critical role in evaluating the success of treatment interventions for musculoskeletal conditions. However, predicting which patients will benefit from treatment interventions is complex and influenced by a multitude of factors. Artificial intelligence (AI) may better anticipate the propensity to achieve clinically meaningful outcomes through leveraging complex predictive analytics that allow for personalized medicine. This article provides a contemporary review of current applications of AI developed to predict clinically significant outcome (CSO) achievement after musculoskeletal treatment interventions.

RECENT FINDINGS

The highest volume of literature exists in the subspecialties of total joint arthroplasty, spine, and sports medicine, with only three studies identified in the remaining orthopedic subspecialties combined. Performance is widely variable across models, with most studies only reporting discrimination as a performance metric. Given the complexity inherent in predictive modeling for this task, including data availability, data handling, model architecture, and outcome selection, studies vary widely in their methodology and results. Importantly, the majority of studies have not been externally validated or demonstrate important methodological limitations, precluding their implementation into clinical settings. A substantial body of literature has accumulated demonstrating variable internal validity, limited scope, and low potential for clinical deployment. The majority of studies attempt to predict the MCID-the lowest bar of clinical achievement. Though a small proportion of models demonstrate promise and highlight the utility of AI, important methodological limitations need to be addressed moving forward to leverage AI-based applications for clinical deployment.

摘要

综述目的

患者报告结局测量(PROM)在评估肌肉骨骼疾病治疗干预的成功与否方面起着关键作用。然而,预测哪些患者将从治疗干预中获益是复杂的,且受多种因素影响。人工智能(AI)或许可以通过利用复杂的预测分析来更好地预测实现具有临床意义结局的倾向,从而实现个性化医疗。本文对目前开发的用于预测肌肉骨骼治疗干预后临床显著结局(CSO)达成情况的AI应用进行当代综述。

最新发现

文献数量最多的领域是全关节置换术、脊柱和运动医学亚专业,其余骨科亚专业合并起来仅有三项研究。各模型的表现差异很大,大多数研究仅将区分度作为一种表现指标进行报告。鉴于此任务预测建模中固有的复杂性,包括数据可用性、数据处理、模型架构和结局选择,各研究在方法和结果上差异很大。重要的是,大多数研究尚未经过外部验证,或存在重要的方法学局限性,这使得它们无法应用于临床环境。大量文献积累显示出内部效度各异、范围有限且临床应用潜力低。大多数研究试图预测最小临床重要差异(MCID)——临床成就的最低标准。虽然一小部分模型显示出前景并突出了AI的效用,但为了将基于AI的应用用于临床部署,需要解决重要的方法学局限性。

相似文献

1
Artificial Intelligence for Clinically Meaningful Outcome Prediction in Orthopedic Research: Current Applications and Limitations.
Curr Rev Musculoskelet Med. 2024 Jun;17(6):185-206. doi: 10.1007/s12178-024-09893-z. Epub 2024 Apr 8.
2
Machine Learning Algorithms Predict Achievement of Clinically Significant Outcomes After Orthopaedic Surgery: A Systematic Review.
Arthroscopy. 2022 Jun;38(6):2090-2105. doi: 10.1016/j.arthro.2021.12.030. Epub 2021 Dec 27.
3
The future of Cochrane Neonatal.
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.
4
What Is the Accuracy of Three Different Machine Learning Techniques to Predict Clinical Outcomes After Shoulder Arthroplasty?
Clin Orthop Relat Res. 2020 Oct;478(10):2351-2363. doi: 10.1097/CORR.0000000000001263.
8
Machine learning algorithms do not outperform preoperative thresholds in predicting clinically meaningful improvements after total knee arthroplasty.
Knee Surg Sports Traumatol Arthrosc. 2022 Aug;30(8):2624-2630. doi: 10.1007/s00167-021-06642-4. Epub 2021 Jul 10.
9
Artificial intelligence and machine learning in orthopedic surgery: a systematic review protocol.
J Orthop Surg Res. 2020 Oct 19;15(1):478. doi: 10.1186/s13018-020-02002-z.
10
Embryo selection through artificial intelligence versus embryologists: a systematic review.
Hum Reprod Open. 2023 Aug 15;2023(3):hoad031. doi: 10.1093/hropen/hoad031. eCollection 2023.

引用本文的文献

1
Generative Artificial Intelligence and Musculoskeletal Health Care.
HSS J. 2025 Apr 26:15563316251335334. doi: 10.1177/15563316251335334.
2
Some artificial intelligence tools may currently be useful in orthopedic surgery and traumatology.
World J Orthop. 2025 Feb 18;16(2):102252. doi: 10.5312/wjo.v16.i2.102252.
3
Developing a Prototype Machine Learning Model to Predict Quality of Life Measures in People Living With HIV.
Integr Pharm Res Pract. 2025 Jan 22;14:1-16. doi: 10.2147/IPRP.S492422. eCollection 2025.
4
Leveraging digital twins for improved orthopaedic evaluation and treatment.
J Exp Orthop. 2024 Nov 10;11(4):e70084. doi: 10.1002/jeo2.70084. eCollection 2024 Oct.

本文引用的文献

4
Using Machine Learning to Predict Nonachievement of Clinically Significant Outcomes After Rotator Cuff Repair.
Orthop J Sports Med. 2023 Oct 19;11(10):23259671231206180. doi: 10.1177/23259671231206180. eCollection 2023 Oct.
6
THA-AID: Deep Learning Tool for Total Hip Arthroplasty Automatic Implant Detection With Uncertainty and Outlier Quantification.
J Arthroplasty. 2024 Apr;39(4):966-973.e17. doi: 10.1016/j.arth.2023.09.025. Epub 2023 Sep 26.
7
Predicting whether patients will achieve minimal clinically important differences following hip or knee arthroplasty.
Bone Joint Res. 2023 Sep 1;12(9):512-521. doi: 10.1302/2046-3758.129.BJR-2023-0070.R2.
8
An Overview of Machine Learning in Orthopedic Surgery: An Educational Paper.
J Arthroplasty. 2023 Oct;38(10):1938-1942. doi: 10.1016/j.arth.2023.08.043. Epub 2023 Aug 19.
10
Challenges and Opportunities for the Use of Patient-Reported Outcome Measures in Orthopaedic Pediatric and Sports Medicine Surgery.
J Am Acad Orthop Surg. 2023 Oct 15;31(20):e898-e905. doi: 10.5435/JAAOS-D-23-00087. Epub 2023 Jun 5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验