Suppr超能文献

一种用于全鼠脑图像数据集 3D 细胞检测的深度学习算法。

A deep learning algorithm for 3D cell detection in whole mouse brain image datasets.

机构信息

Sainsbury Wellcome Centre, University College London, London, United Kingdom.

出版信息

PLoS Comput Biol. 2021 May 28;17(5):e1009074. doi: 10.1371/journal.pcbi.1009074. eCollection 2021 May.

Abstract

Understanding the function of the nervous system necessitates mapping the spatial distributions of its constituent cells defined by function, anatomy or gene expression. Recently, developments in tissue preparation and microscopy allow cellular populations to be imaged throughout the entire rodent brain. However, mapping these neurons manually is prone to bias and is often impractically time consuming. Here we present an open-source algorithm for fully automated 3D detection of neuronal somata in mouse whole-brain microscopy images using standard desktop computer hardware. We demonstrate the applicability and power of our approach by mapping the brain-wide locations of large populations of cells labeled with cytoplasmic fluorescent proteins expressed via retrograde trans-synaptic viral infection.

摘要

理解神经系统的功能需要绘制其组成细胞的空间分布,这些细胞可以通过功能、解剖结构或基因表达来定义。最近,组织准备和显微镜技术的发展使得可以对整个啮齿动物大脑中的细胞群体进行成像。然而,手动绘制这些神经元容易产生偏差,而且通常耗时过长。在这里,我们提出了一种开源算法,用于使用标准台式计算机硬件在小鼠全脑显微镜图像中全自动检测神经元胞体。我们通过绘制通过逆行跨突触病毒感染表达的细胞质荧光蛋白标记的大群体细胞的大脑广泛位置来证明我们方法的适用性和强大功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0b3/8191998/d44c01d92c2f/pcbi.1009074.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验